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Abstract. In support of the computational design of high toughness steels as hierarchically structured materials,
a multiscale, multiphysics methodology is developed for a ‘ductile fracture simulator.’ At the nanometer scale, the
method unites continuum mechanics with quantum physics, using first-principles calculations to predict the force-
distance laws for interfacial separation with both normal and plastic sliding components. The predicted adhesion
behavior is applied to the description of interfacial decohesion for both micron-scale primary inclusions governing
primary void formation and submicron-scale secondary particles governing microvoid-based shear localization
that accelerates primary void coalescence. Fine scale deformation is described by a ‘Particle Dynamics’ method
that extends the framework of molecular dynamics to multi-atom aggregates. This is combined with other meshfree
and finite-element methods in two-level cell modeling to provide a hierarchical constitutive model for crack
advance, combining conventional plasticity, microstructural damage, strain gradient effects and transformation
plasticity from dispersed metastable austenite. Detailed results of a parallel experimental study of a commercial
steel are used to calibrate the model at multiple scales. An initial application provides a Toughness-Strength-
Adhesion diagram defining the relation among alloy strength, inclusion adhesion energy and fracture toughness as
an aid to microstructural design.

The analysis of this paper introduces an approach of creative steel design that can be stated as the exploration of
the effective connections among the five key-components: elements selection, process design, micro/nanostructure
optimization, desirable properties and industrial performance by virtue of innovations and inventions.

1. Introduction

Both strength and toughness are key property-indices for steels but it remains a challenge to
gain both of them simultaneously. A principal objective of multiscale materials mechanics is to
account for the observed properties of macroscopic solid bodies, such as strength and fracture
toughness, integrating the quantum mechanical theory of the behavior of atomic particles. For
this purpose the difficulties and complexity originate in the substantial differences in philo-
sophy and viewpoints between conventional continuum mechanics and quantum theory. In the
former, the solution of a boundary value problem is uniquely determined based on Newton’s
laws when initial and boundary conditions are given; whereas the Heisenberg uncertainty
principle, the cornerstone of quantum mechanics, indicates that motion of a particle is char-
acterized by wave solutions of Schoedinger’s Equation and the intensity of a wave solution
defines the ‘probability density’ for the position of this particle at the state characterized by
the wave dispersion. For mechanical engineers, the challenge lies in how to establish the
relationship between a continuum mechanical system and its atomistic electronic structure
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Figure 1. A proposed design concept based on the idea presented in [2].

and how to constitute a unified framework that bridges the mechanisms from different scales.
This is a key-issue in the ONR project ‘Cybersteel 2020’ [1] directed at the predictive design
of novel steels combining high strength and fracture toughness.

In this paper, a bottom-up computational mechanical methodology motivated by a top-
down design strategy is proposed to establish the relationships between the atomistic failure
modes and macro-scale properties of steels in support of quantitative microstructural design
for ductile fracture toughness. To this end, new models and computational schemes have been
developed. The innovations presented here can be summarized as follows:
1. Based on the fundamental idea of [2, 54], we introduce an approach to creative steel design

as illustrated in Fig. 1, i.e.: to explore and establish the effective connections among
the five key-components: elements/elemental components selection, process design, mi-
cro/nanostructure optimization, desirable properties and industrial performance.

2. We conclude that strengthener alloys work through the strong interfacial coherence. An
atomistic adhesion model is proposed which counts both the separation normal to newly
created interfaces and plasticity induced sliding. The normal separation is described as
creation of empty sites, which may trigger plastic sliding that translates the short-ranged
covalent binding force into a long-ranged decohesion law. Rice’s criterion describes these
competing mechanisms.

3. A first principle-based ab initio computation has been performed to calculate the gener-
alized fault energy against shear sliding in a BCC(Fe) crystal using a proposed atomistic
cell.

4. A ‘Particle Dynamic’ approach has been developed, which transforms an atomistic system
into a ‘super-molecular’ particle system, lumping a fixed number of atoms into a particle
while maintaining intrinsic structural properties such as crystal structure, elastic constants,
and molecular dynamic kinetics. As the particle system can have much less degrees of
freedom compared to the atomistic system, the Particle Dynamics can be used for bridging
atomistic analysis to continuum mechanics. This method possesses high efficiency for
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the treatment of localization phenomena, such as crack growth and debonding/decohesion
between inclusions and the matrix.

5. A hierarchical multi-physics computational constitutive model has been developed based
on a unified thermodynamic framework. This model is applied as a ‘ductile fracture simu-
lator’ to support quantitative tradeoff analysis in microstructural optimization for fracture
toughness.

6. A toughness-strength-adhesion diagram has been obtained, which establishes the rela-
tionship among alloy matrix strength, inclusion adhesion interfacial energy and fracture
toughness as an example of simulator application for steel design.
This paper essentially comprises two parts: the developed methodology and its applica-

tion for steel design. In Section 2 we introduce the energy approach that is applied at the
quantum scale, the Particle Dynamics method that bridges molecular dynamics to the conven-
tional particle method, and a unified multi-physics thermodynamic framework in continuum
mechanics. The application part starts at Section 3, where a brief description is given about
concepts of steel design and the corresponding multi-scale approach. Section 4 introduces
the first principle-based ab initio analysis. Section 5 describes the hierarchical cell modeling.
Simulations of crack propagation and fracture toughness are presented in Section 6. As a con-
clusion, a toughness-strength-adhesion diagram is developed. This diagram, together with the
hierarchical constitutive model and computational procedure, constitute the ‘ductile fracture
simulator’ presented in the last section.

2. Methodology and approaches

Like all conventional materials, steels are heterogeneous and multiscale in nature. A modern
ultra-high strength steel generally consists of an alloy matrix with several levels of dispersed
particles. Interfacial strength between the different phases is crucial to the failure behavior of
the steel.

In order to understand the relationship between macro-scale deformation and atomistic
electronic structure, it is important to:
– develop models that account for the mechanisms at each scale;
– establish the relationship between macro-scale stress-strain response and the models at

smaller scales by implementing the underlying mechanisms into macro-scale constitutive
laws.

For this purpose, in this section we introduce a multi-physics hierarchical model which in-
cludes a quantum-scale atomistic separation model, an intermediate scale Particle Dynamics
approach, and a general thermodynamic formulation that unifies different mechanics into
potentials in the framework of heterogeneous continuum mechanics.

2.1. INTERFACIAL SEPARATION: FROM QUANTUM NANO-MECHANICS TO CONTINUUM

MICRO-MECHANICS

For a metallic or intermetallic system where each atom has a sufficient number of electrons,
the Thomas-Fermi [3, 4] model is applicable which approximates the system as a combina-
tion of static atomic cores that form the crystal and an electronic gas that fills space among
the atoms. Hohenberg and Kohn [5] and Kohn and Sham’s [6] theorem indicate that the
ground state energy of such a many body system, which is an eigenvalue of the corresponding
solution of the Schrödinger Equation, is determined by the solution of the electron density
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distribution. Various numerical methods have been developed to solve the charge density
distribution, e.g. [7–10]. Among them the full-potential spin-polarized linear augmented plane
wave (FLAPW) [11, 114, 117] is presently considered to be the most accurate scheme as it
holds the minimum approximations. It is the principal quantum mechanical method applied
in the multidisciplinary collaboration [1] described here.

Macroscopic fracture of a crystal is a process whereby atomic aggregates are split into two
parts. For a defect-free system where separation is normal to the newly created surface, Rose
et al. [12] found that the binding energy obeys an approximate ‘universal relation’ under a
simple two parameter scaling:

EN (λN) = [E (λN0) − E (∞)] · E∗
N

(
λN

lT F

,
λN0

lT F

)
(2.1)

where EN (λN) is the binding energy; λN is the normal separation and λN0 is the normal
separation at the equilibrium state; E (λN0) and E (∞) are the total ground-state energies of
the system at λN0 and λN → ∞, respectively; lTF is a scaling length which characterizes an
atomic size and E∗

N is an approximate function which describes the shape of EN (λN). When
the system is fully separated and no extra strain is imposed before and after this separation,
the change of the total ground-state energy is identical to the newly created surface energy,
i.e.:

2AγF = E (λN0) − E (∞) (2.2)

where γF is the surface energy per unit area and A is the area of the newly created surface.
Real crystals may contain a variety of imperfections, e.g. impurity or interstitial atoms,

vacant lattice site, and dislocations. The normal separation (2.1) can be viewed as the creation
of new vacant lattice site, which may trigger other defects, such as the motion of dislocations
along the interacting slip planes. Rice’s criterion [13] states that dislocation motion will be
activated when the energy barrier (γUS) against unstable sliding is smaller than the cleavage
surface energy γF , and provides a basis for describing the competition between these two
mechanisms. The mathematical expression of Rice’s criterion is:

γF

γUS
κR > 1 (2.3)

where γUS is the energy barrier per unit area against unstable sliding, κR is a function of the
average lattice elastic stress and the angle φ between the slip-plane and the newly-created
surface and κR < 1. When dislocation induced sliding occurs, the relation between the total
system energy ES and sliding separation λS per dislocation can be written as:

ES (λS) = γUSE
∗
S (λS, φ) (2.4)

where E∗
S (λS, φ) is a normalized function which describes the shape of ES (λS).

Weertman [14] employed a rectangular wave shape for E∗
S (λS, φ). Based on the Peierls

concept for a monoclinic crystal, an approximate expression for E∗
S is suggested in [13]

E∗
S = sin4

(
πλS

b

)
(2.5)

The relations (2.1–2.4) are fundamental equations of atomistic fracture. To obtain accurate
values of γF and γUS, and expressions for E∗

S andE∗
N , first principle-based calculations are
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required which will be discussed in the next sub-section. The quantum mechanics formulation
and the method to obtain these quantities and functions are briefly described in Appendix A.

2.2. PROPOSED POTENTIAL APPROACH BASED ON NEEDLEMAN’S POTENTIAL AND

QUANTUM MECHANICS

Needleman [15] developed an interface cohesive model that defines the normal traction(σN)

and tangential traction (σT ) along the interface through a potential �:

σN = − ∂�

∂ [uN ]
; σT = − ∂�

∂ [uT ]
(2.6)

where [uN ], [uT ] are normal and tangent interfacial separations, respectively. An expression
for � is given in [15] which is calibrated according to the experimental results [16].

Based on the quantum mechanical computation from (2.1–2.4), we propose

�N = EN + κslide

∑
ES; �T = κγ Eγ (2.7)

where κslide and κγ are coefficients to be determined; Eγ is the energy when sliding occurs
tangential to an interface, which is termed the γ plane, and

∑
ES is the summation of sliding

energy for all slip systems except the γ plane.
By substituting (2.7) into (2.6), we obtain an expression of Needleman’s interfacial law

based on quantum theoretical solutions of (2.1–2.5).

2.3. RESCALING FACTOR

Without sliding, (2.7) is controlled by relation (2.1) that describes a process of covalent bond
breaking which is very short-ranged. However, when normal separation is accompanied by
plastic shear, the short range force defined by (2.1) may be transformed into a longer range
force. This mechanism is schematically illustrated in Fig. 2. In this figure the separation of
the interface A is defined as the separation imposed on the two ends of the dashed box that
contains all motions within the box. Fig. 2a shows the case without dislocations where (2.3) is
not satisfied, while Fig. 2b shows the case where normal separation λN is a combination of the
normal separations between interfacial atom pairs and gliding induced separation. Dislocation
motion may thus roughen a fracture surface and, thereby modify the total surface energy and
acting peak stress.

Hence, Figs. 2a–b can be stated as the following two hypotheses:
1. The tangential components of plastic sliding trade off against each other, except the sliding

along the γ -plane.
2. If we assume the change of surface energy to be negligible, then the normal components

of all gliding induced separations reduce the peak separation force through rescaling of the
universal function E∗

N defined in (2.1), i.e.

EN (λN) + κslideES (λS) = 2γF E∗
N

(
κ

[
λN − λN0

lTF

])
(2.8)

where κ is a re-scaling parameter to be discussed in the next sub-section.
By substituting (2.8) into (2.7), it becomes

�N = 2γF · E∗
N

(
κ

[
λN − λN0

lTF

])
(2.9)
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Figure 2. Normal separation and sliding induced separation: a) pure normal separation; b) mixed separation; c) a
dislocation induced sliding may cause a rough morphology at the fracture surface.

and

�T = ES

(
λγ

)
(2.10)

2.4. INTERFACIAL SEGREGATION

At the atomic scale, e.g., an ideal coherent interface between (001) TiC and (001) Fe is illus-
trated in Fig. 3a as first analyzed via FLAPW calculations in [17]. Such supercell calculations
define the chemical bonding and adhesive energy of the coherent patches between interfa-
cial dislocations, and define an upper bound to the interfacial strength, which is predictably
reduced by the presence of primary and secondary dislocations in real interfaces.
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Figure 3. a) Coherent Fe/TiC interface, b) a schematic diagram of a grain boundary.

Schematically a general interphase boundary between two crystals can be approximated as
three regions: grain A, grain B, and an interfacial zone h; as illustrated in Fig. 3b. The irreg-
ularities at a boundary, such as misfit in lattice constants, mismatch in atomistic properties,
crystal structure and orientations, molar fraction of solutes, and the free volume in h, may
significantly change the energy-separation law (2.9) because of the formation of dislocation
cores and modification of interfacial energy.

According to the thermodynamic description of interfacial segregation, e.g. [18–21], dur-
ing a fast separation at low temperature the reduction of ideal (Griffith) separation work can
be computed by [19]:

2γF = 2γ 0
F − (

µX
I − µX

S

)
	X (2.11)

where γ 0
F is the separation energy in a pure system without segregate elements, the superscript

‘X’ denotes the quantities associated with a segregate element X, 	X is the quantity of the
component Xper unit area of interface, µX

I is the interfacial chemical potential of Xbefore
separation and µX

S is the chemical potential of Xon the free surface after separation. For the
case of grain boundaries in steels, the amplitudes of

(
µX

I − µX
S

)
for the components C, P, Sn,

Sb, S are given in [19] based on experimental data.
When an interface structure is fixed, the re-scaling parameter κ in (2.9) can be computed

accurately. However, it is impractical to do this case by case in engineering design. We
introduce an ad hoc estimate of κ for our application.

The idealized coherent interface in Fig. 3a can be considered as a degenerate case of Fig. 3b
when θ = 0 and h = ai , where ai is the interatomic distance at the interface and it has the same
order as the lattice constants of the matrices. An ad hoc estimate of the re-scaling parameter
κ in (2.9) is

κ = ai

h
(2.12)
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Alber and Bassani [22] have performed a series of molecular dynamic simulation of bcc �3
and �5 grain boundaries. According to the variation of the computed elastic constants their
results suggest that h ≈ 5a where a is the lattice constant of A and B in Fig. 4 when A =
B. According to this computation, κ = 1/5 is the estimated value applied in this paper. This
estimate also matches experimental results for the commercial steel that will be analyzed later.

2.5. PARTICLE DYNAMICS1

Molecular Dynamics (MD) is an appropriate method for bridging quantum physics to con-
tinuum mechanics, applying (2.1–2.4) to establish an interatomic potential of a crystalline ma-
terial. However, the application of molecular dynamics is limited in size scale. This motivated
the development of a Particle Dynamics approach in this research.

The basic idea of Particle Dynamics is to transfer an atomic system into a particle system
through lumping an atomic aggregate with a fixed number of atoms into each ‘particle’. The
particle system has the same crystal structure as the atomic system but with a spacing at the
scale of interest; the original physics is preserved by transforming the inter-atomic potential
(Fig. 4a) into an inter-particle potential via an ‘equivalent stiffness’ rule, see Figs. 4b–c. A
brief introduction of this method is given in this sub-section. More details of the method are
described in [23].

Our Particle Dynamics is developed based on the methodology of the Embedded-Atom
Method (EAM) [24, 25] and meshfree methods [26–30]. Regarding the literature of meshfree
method and multi-scale numerical methods, we refer to [26, 28, 31–36, 109–114, 116]. The
reviews of meshfree methods can be found in [37, 38].

2.6. PARTICLE SYSTEM AND INTER-PARTICLE POTENTIAL

For metals, the Embedded-Atom Method (EAM) [24, 25] is a powerful method among those
employed in molecular dynamics. In EAM the total energy Etot of a crystal is expressed as the
summation of each individual atom:

Etot =
∑

i

Ei (2.13)

where Ei is defined by

Ei = Fi

(
ρh

i

) + 1

2

∑
i,j,j �=i


ij

(
rij

)
(2.14a)

where ρh
i is the total electron density at atom i associated with the host (i.e., the rest of the

atoms in the system) and Fi is a function of ρh
i ; 
ij

(
rij

)
is a pair-potential that is the function

of the distance between atom i and j .
In this study we propose an additional term to (2.14a):

Ei = Fi

(
ρh

i

) +
∑

i, j, k, j �= k,

j �= i, k �= i

Gijk

(
θijk

) + 1

2

∑
i,j,j �=i


ij

(
rij

)
(2.14b)

where Gijk

(
θijk

)
is a three-body energy associated with rotation and θijk is the angle between

bonds i-j and i-k.
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The Fi

(
ρh

i

)
in (2.14b) can be, as suggested in [39]:

ρh
i =

∑
j,j �=i

[
r0

ij

rij

]6

and ρh0
i =

∑
j,j �=i

1 (2.15a)

and

Fi

(
ρh

i

) = − (
Esep − Eempty

)(
1 − m0Ln

(
ρh

i

ρh0
i

)) (
ρh

i

ρh0
i

)m0

(2.15b)

where the superscript ‘0’ denotes the case that the rij, thus ρh
i , at equilibrium condition so

rij = r0
ij; m0 is a constant to be determined; Esep and Eempty are atomic separation energy and

unrelaxed empty site formation energy, respectively; the former is defined by (2.2).
For the atomic system as shown in Fig. 4b, in general the pair potential between atom ι and

atom j can be characterized, e.g. by the Lennard-Jones potential (Fig. 4a):


atom
ij = 4e0

[(
r0

rij

)12

−
(

r0

rij

)6
]

(2.16)

which contains two scaling parameters: r0 and e0. The former is the ‘collision diameter’ that
refers to the separation for which the energy is zero; and the latter is the ‘depth of the well’ as
demonstrated in Fig. 4a.

We propose the three-body energy term in the form as

Gijk

(
θijk

) = γUS

[(
cos θijk cos θjki cos θkij

)m1 − c3
]

(2.17)

where θijk is the angle between rij and rik, rij denotes the vector starting at atom iand ends at
atom j ; m1 = 1 and c3 = 0.1887 for bcc Fe crystal.

Thus, the atomic system in Fig. 4b is completely defined when its crystal structure is given
with a fixed potential (2.13–2.17). Consequently, when the particle system in Fig. 4c has
the same crystal structure as the system in Fig. 4b with a similar inter-particle potential like
(2.13–2.17), then the particle system can be used to reproduce the kinetics and dynamics of
the system in Fig. 4b with the accuracy up to the spacing between particles. The key-issue
here is to find the parameters such as r0 and e0 in the inter-particle potential so as to preserves
the same physics as that in the atomic system.

The stability of a crystal structure is characterized by its stiffness, which is expressed
by its elastic constants and is determined by underlying electronic-atomic structure. For a
cubic system such as BCC and FCC, the crystal structure stiffness is determined by three
independent elastic constants: C11, C12, and C44 [24, 25]. For a given cubic crystal, the r0 and
e0, together with the m0 in (2.15) can be fixed by these elastic constants. This has inspired
an ‘equivalent stiffness rule’ for the transformation between an atomic system and a particle
system by preserving the same elastic constants.

In this analysis, Rose’s universal law (2.1) is used to fit (2.14b, 2.15–2.17) for an atomic
system like Fig. 4b while m0 is set to be 0.36 according to results in [40, 41]. By partitioning
the system of Fig. 4b into sub-domains with a fixed number of atoms, we aggregate these
atoms in each sub-domain into single particles, as illustrated in Fig. 4c. This class of particles
is termed ‘molecular particle’. The size of each sub-domain is determined by the length scale
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Figure 4. Particle Dynamics: a) conventional Lennard-Jones Potential; b) an atomic system with the equilibrium
interatomic distance a0; c) a particle system with the equilibrium inter-particle distance Na0; the particles at this
scale are termed ‘molecular particles’; d) the structural particle system where each structural particle is lumped into
several molecular particles; all structural particles are partitioned into natural elements defined by grain structure;
e) coupling of the continuum mechanics solution inside a grain with interfacial solution

of interest (30a in 2D simulation, where a is the lattice constant). The ‘equivalent stiffness
rule’ is applied to establish the potential for this ‘molecular particle’ system.

For simplification, here we consider the case of infinitesimal deformation. There is no
difficulty to extend this procedure into finite deformation. For an infinitesimal motion of an
atom i in a crystal characterized by (2.14), the change of the energy �Ei associated with the
atom i is

�Ei = Fi

(
ρh

i

) − Fi

(
ρh0

i

) + 1

2

∑
j

[

atom

ij

(
rij

) − 
atom
ij

(
r0

ij

)]
(2.18)

where j is summed over all neighbors of i if rij is less than a given cut-off radius, the term
Fi

(
ρh0

i

) + 1
2

∑
j

[

atom

ij

(
r0

ij

)]
denotes a reference state and is a constant. The derivation oper-

ations of (2.18) with respect to the distances to neighbor atoms along a given direction reflects
the stiffness of the crystal in this direction, which is interpreted as an orientation dependent
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elastic constant [24]. When the system is under pure volumetric, rhombohedral shear, and
tetragonal shear deformation; respectively, one can derive the corresponding bulk modulus
K, rhombohedral shear modulus G1 and tetragonal shear modulus G2. This provides three
conditions to calibrate r0, e0, and m0 for the equivalent embedded atomic potential in the
particle system in Fig. 4c sustaining the same K,G1 and G2 as that in the original atomic
system.

For a BCC or FCC crystal, this transformation can be derived analytically according to
crystal distortions [42]. In order to simplify the analysis, in the following we consider the case
m0 = 0 and no three-body term Gijk so only the calibrations of r0 and e0 are required.

Consider a BCC crystal with lattice constants {a1, a2, a3}; at equilibrium state: ai = a0

for i = 1, 2, 3. Any atom in such a BCC crystal has 8 neighbor atoms with the distance
r1 = a0

√
3/2, 6 neighbors with the distance r2 = a0, 8 neighbor atoms with the distance

r3 = a0

√
2. In order to illustration the concept, we cut off the ‘domain of influence’ of the

potentials (2.16–2.17) to be less than r3.
When the crystal is under volumetric deformation:

a1 = a2 = a3 = a (2.19)

then the bulk modulus at the position that the atom i occupied is

Katom = 1

9 (a0)
2

[
3a0

(

atom

i1 (r1)
)′′ + 3a0

(

atom

i2 (r2)
)′′

− 4
√

3
(

atom

i1 (r1)
)′ − 6

(

atom

i2 (r2)
)′]

(2.20)

where

(
 (x))′ = d (
 (x))

dx

and
(

atom

ij

(
rj

))
denotes the potential (2.16) of atom i to the neighbor with the distance rj ,

j = 1, 2. For infinitesimal strain, Katom is constant because:

(

atom

α1 (r1)
)′ =

(

atom

α1

(
a0

√
3

2

))′
,

(

atom

α2 (r2)
)′ = (


atom
α2 (a0)

)′

Similarly, when the BCC crystal is under a rhombohedral shear deformation:

a1 = a, a2 = a3 = 2a0 − a (2.21)

the corresponding rhombohedral shear modulus at site i is

Gatom = 1

9 (a0)
2

[
3a0

(

atom

i1 (r1)
)′′ + 4

√
3

(

atom

i1 (r1)
)′

+ 9
(

atom

i2 (r2)
)′]

(2.22)

By partitioning the BCC atomic crystal of Fig. 4b into a ‘BCC particle crystal’ with the
spacing Na0 in Fig. 4c; the particles at this scale are termed ‘molecular particle’ and this
system is characterized by the potential


PD
ij = 4E0

[(
R0

Rij

)12

−
(

R0

Rij

)6
]

(2.23)
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where the superscript ‘PD’ denotes the quantities associated with the ‘Particle Dynamics’ in
Fig. 4c, and Rij is the distance between a particle pair i and j . By restricting the domain
of influence of (2.23) to the first two closest neighbor-particles and repeating the procedure
(2.19–2.22), we obtain

KQP = 1

9 (Na0)
2

[
3Na0

(



QP
ij (R1)

)′′
+ 3Na0

(



QP
ij (R2)

)′′

− 4
√

3
(



QP
ij (R1)

)′ − 6
(



QP
ij (R2)

)′]
(2.24)

and

GQP = 1

9 (Na0)
2

[
3Na0

(



QP
ij (R1)

)′′
+ 4

√
3

(



QP
ij (R1)

)′

+ 9
(



QP
ij (R2)

)′]
(2.25)

where

R1 = Na0

√
3

2
; R2 = Na0

Let

KPD = Katom; GPD = Gatom (2.26)

These two equations determine the E0 and R0 in the particle potential defined by (2.23).
At an interface between two different compounds, e.g. the Fe-TiC interface where Fe is

BCC and TiC has the NaCl crystal structure, the procedure described above is still available
by defining the elastic constant associated with the direction perpendicular to the interface,
selecting appropriate sizes of domains of influence.

There will be no difficulty to extend the above derivation to the case that m0 is non-trivial.

2.7. COUPLING OF PARTICLE DYNAMICS AND CONTINUUM MECHANICS

We propose a procedure that couples the ‘molecular particle’ solution with continuum mech-
anics simulation via a secondary partitioning according to the natural spacing unit of a mater-
ial, such as a grain.

Starting at continuum mechanics, using the concept of natural element [28] we construct
the moving particle natural element sets that fit to natural sub-domains, e.g. grains. Each
natural element is discretized into several particles that we term ‘structural particles’, see
Fig. 4d. Each structural particle is lumped by several molecular particles. This secondary
partitioning is somewhat like the idea first proposed in the Quasicontinuum method [43, 44].
The quantities associated with a structural particle I is denoted by the capital subscript ‘I ’
and the quantities associated with a molecular particle i is denoted by the plain subscript ‘i’.

We assume that the rate of displacement field u of the problems in Figs. 4d–e can be written
as an additive decomposition:

u̇ = u̇C + u̇P − ẇ (2.27)
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where uC denotes a continuum mechanical solution and uP a particle dynamics solution, w
is the overlapping between uC and uP ; the dot above denotes the mass-derivative operation.
The multi-scale solution like (2.27) with two-term decomposition was proposed by Hughes in
[33]. A computational concurrent approach with the overlapping w term was developed by Liu
et al. in [34]. This approach was applied in coupling two scale solutions in a strain gradient
theory-based localization analysis [45] and recently in coupling a molecular dynamics and
finite element solution in [46].

The continuum mechanical solution uC is determined through the total Lagrange weak
form solution [47]:∫

�I

(
ρ0uC · δu̇C + τ

(
uC

) : ∇δu̇C
)

d�I −
∫
	I

t

t̄·δu̇C
d	I

t = 0 (2.28)

where ρ0 is the density at reference configuration and τ is the first Piola-Kirchhoff stress
tensor, �I is a reference domain that coincides to the grain I in Figs. 4d–e and 	I

t is the
boundary of �I where the force t̄ is imposed. In a discretized ‘structural particle’ system, the
last term in (2.28) is expressed in the form

∫
	I

t

t̄·δu̇C
d	I

t =
NJ∑
J=1

wJ t̄J · δu̇C
J (2.29)

where the subscript ‘J ’ denotes the quantities at node J and wJ is the weight at this node;
there are totally NJ nodes in �I on which the force t̄J is imposed. The MPFEM [29, 30] is
applied to solve (2.28–2.29) in each �I .

The solution of (2.28) requires knowledge of a constitutive relation, which can be obtained
in two ways: to define a structural particle pair potential using the same procedure for molecu-
lar particles and to engage a continuum analytical model [48] based on the Cauchy-Born law.
The second way is applied in this analysis. The details will be given in the following sections.

The uP is solved using the potential defined below. Let �I1,�I2,�I3 . . . be the domain of
the grains I1, I2, I3,. . . (the sub-domain of secondary partitioning in Fig. 4d); the pair potential
between a structural particle J1 in �I1and another structural particle J2 in �I2 is defined as


SP
J1J2

=



NJ1∑
i=1

NJ2∑
j=1


MP
ij

(
rij

)
for �I1 �= �I2

0 for �I1 ≡ �I2

(2.30)

where 
SP
J1J2

is the pair potential in the structural particle system and 
MP
ij

(
rij

)
is the pair

potential between the molecular particle i that is lumped to the structural particle J1 and the
molecular particle j is lumped to the structural particle J2; NJ 1 and NJ 2 denote the number of
molecular particles lumped to J1 andJ2, respectively.

The potential 
SP
J1J2

in (2.30) establishes the bonds between �I1and �I2 . Hence, the solu-
tion of uP provides the boundary condition of uC , as illustrated in Fig. 4e.

To trade off the overlapping between uP and uC , the term ẇ in (2.27) is defined as

ẇ =
{

u̇C at structural node J1 : 
SP
J1Ji

�= 0

0 at structural node J1 : 
SP
J1Ji

≡ 0
(2.31)
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Thus, the boundary value problem defined in Fig. 4e is solved through the continuum mech-
anics weak form (2.28) with the boundary conditions defined by (2.29) and (2.30).

2.8. A THERMODYNAMIC FRAMEWORK FOR MULTI-PHYSICS COMPUTATIONAL

MECHANICS

We establish a thermodynamic framework for continuum computational mechanics analysis
based on the theory developed by Hughes [49], which provides the capability for
– establishing a constitutive model without violation of energy conservation law;
– conducting a stabilized numerical simulation.

In the following analysis, we use σ to represent the Cauchy stress tensor and ε̇ the sym-
metric part of the velocity gradient. These Cauchy stresses and velocity gradient can be at
either sub-micro or micro or macro scale. All analysis will be performed in a co-rotation con-
figuration so the change of stress due to system rotation is removed. The detailed formulation
of the co-rotation operation under large deformation is given in Appendix B.

We use bold-faced x to represent the coordinate of a material point in a reference coordinate
system, i.e. the Lagrange configuration; and bold-faced y to represents the coordinate in the
spatial (Euler) coordinate system:

y = y (x, t) = x + u (x, t) (2.32)

where t represents time. Consider a line element vector dr0 in the reference configuration.
After deformation it becomes the line element dr in the spatial configuration. The transform-
ation:

dr = Fdr0 (2.33)

is uniquely determined by the deformation gradient defined by

F (x, t) = ∂y
∂x

= I + ∂u
∂x

(2.34)

where F can be viewed as a transformation tensor that contains rotation and deformation.
In the co-rotation coordinate system described in Appendix B, the rotation part is removed
and the deformation can be divided into two steps: pure elastic transformation Fe and plastic
transformation Fp:

F = Fp · Fe

The velocity gradient L in the deformation field (2.32), defined as the mass derivative of F, is
then

L = DF
Dt

= ∂F
∂t

· F−1 = Ḟ · F−1 (2.35)

and

Ḟ · F−1 = Ḟ
e · Fp · (Fe · Fp)−1 + Fe · Ḟ

p · (Fe · Fp)−1

= Ḟ
e · (Fe)−1 + Fe · Ḟ

p · (Fp)−1 · (Fe)−1 (2.36)

In this paper, we assume that elastic deformation is infinitesimal so that

Fe = I + ∂ue

∂x
= I + o (I) ,

(
Fe

)−1 = I − o (I)
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hence

L = Ḟ · F−1 ∼= Ḟ
e · (

Fe
)−1 + Ḟ

p · (
Fp

)−1

Define strain rate as the symmetrical part of the velocity gradient:

ε̇ = sym (L)

We obtain the additive decomposition of strain rate ε̇:

ε̇ = ε̇
e + ε̇

p (2.37)

where

ε̇
e = sym

(
Ḟ

e · (
Fe

)−1
)

, ε̇
p = sym

(
Ḟ

p · (
Fp

)−1
)

According to conventional continuum mechanics:

σ̇ = D : ε̇
e; ε̇

p = ˙̄ε ∂


∂σ
(2.38)

where D is the elastic stiffness matrix, ˙̄ε is a ‘flow factor’, 
 is the plastic potential to be
found.

Following the procedure of elastic-plasticity, e.g. introduced in [47], leads to the incre-
mental formulation of constitutive law when 
 is known:

�σ = Dep:�Pε

where

Dep = De − (De:
σ) (
σ :De)

− ∑
k

hk · 
λk
+ 
σ :De:
σ

(2.39)

and


λk
= ∂


∂λk

; 
σ = ∂


∂σ
; λ̇k = ˙̄εhk and hk = ∂�k

∂Fk

where Fk,λk are conjugative pairs of the internal variables and the corresponding general
thermodynamic force, respectively. For examples, Fk,λk can be the pair of stress σ and strain
ε, the interfacial traction t̄ and separation [u], a scale damage f and its driving force h,
temperature gradient and heat flux, etc. �k is the corresponding energy dissipation to (Fk,λk):

�k =
λk∫

0

Fk · dλk (2.40)

We want to find the general rule to establish a multi-physics plastic potential 
 in (2.38).
Hughes [49] has proven that the stability of a computational mechanics solution is determined
by the satisfaction of the local form of Clausius-Duhem inequality:∑

k

[
Fk · λ̇k − �̇k

(
λ̇k, T

)]
− ϕ̇

(
ε̇

e
, T

) + sṪ ≥ 0 (2.41)
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where Tsg, ϕ denote in turn the temperature, entropy, and free energy.
The Clausius-Duhem inequality is actually an alternative representation of the second ther-

modynamic principle [50], which has been widely applied in constitutive models, e.g. in [51,
52, 105, 106]. However, [49] reveals that (2.41) is equally important for both constitutive
modeling and numerical simulation, which is crucial for computational material design.

In this analysis we assume no heat supply and heat conduction. Considering the simplest
case in Fig. 4e: only the conjugative pairs of stress-strain (σ, ε), interfacial traction and separ-
ation

(
t̄, [u]

)
, and scale damage and its driving force (h, f ) are taken into account; then (2.41)

becomes:

σ : ε̇ + t · [
u̇
] + hḟ − ϕ̇

(
ε̇

e
, T

) − �̇t − �̇f + sṪ ≥ 0 (2.42)

where �t and �f are the dissipation energies of
(
t̄, [u]

)
and (h, f ), respectively; and

ϕ̇ = ∂ϕ

∂εe
: ε̇

e + ∂ϕ

∂T
· Ṫ , �̇t = ∂�t

∂ [u]
: [

u̇
]+ ∂�t

∂T
· Ṫ , �̇f = ∂�f

∂f
ḟ + ∂�f

∂T
· Ṫ (2.43)

On the other hand:

σ = ∂ϕ

∂εe
; s = ∂ϕ

∂T
+ ∂�f

∂T
+ ∂�t

∂T
(2.44)

Substituting (2.43–2.44) into (2.42), it can be satisfied if:

t = ∂�t

∂ [u]
, h = ∂�f

∂f
and σ : (

ε̇ − ε̇
e
) ≥ 0 (2.45)

The first relation in (2.45) requires �t to be the potential defined by (2.10). The second
relation defines a potential of damage. By comparison of the third relation of (2.45) with
(2.38), we obtain:

σ̇ : ∂


∂σ
≥ 0 (2.46)

This equation lays down a ‘convex condition’ for any proposed plastic potential �, which also
defines the local form of stability condition for the multi-physics computational mechanics
approach. At a material point, (2.46) is an alternated expression of Druck’s postulate for
isotropic plasticity.

3. Ductile fracture simulator

3.1. THE MODEL

A key-issue in advanced steel design is to establish the quantitative relationships between the
micro/nano-structures of steel and its micro-macro mechanical properties. To this end, a pro-
posed multi-scale, multi-physics computational material design approach to ductile fracture
toughness is outlined in Fig. 5a.

On the left side in this figure is a TEM micrograph of a carbon extraction replica from the
fracture surface of a ultrahigh-strength steel [53], in which particles can be divided into two
groups according to their size. The rest of this figure introduces the notion of a hierarchical
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Figure 5a. A multi-scale, multi-physics model for UHS steel design [56], where the TEM micrograph is from
[53].

multi-scale, multi-physics model that is proposed to apply to the ductile fracture process at
the material presented in the TEM micrograph. This model can be interpreted as a bottom-up
approach: starting from the right, the diagram with a curve at the upper corner is a traction-
separation law through decohesion between secondary particles and iron matrix, which is
computed according to (2.1–2.4) based on the methodology in [54]. This first principle-
based traction-separation law is embedded into the sub-micron cell that contains a secondary
particle. The computational strategy introduced in [26, 55] in conjunction with the proposed
Particle Dynamics, is applied to obtain a plastic potential and a corresponding constitutive
law, which is used as the matrix properties in the micro-scale cell. This procedure is repeated
hierarchically at the scale of micro-scale cell to obtain a corresponding macro-scale con-
stitutive law that is used to simulate crack growth and to calculate the corresponding fracture
toughness. A simplified interpretation of Fig. 5a is plotted in Fig. 5b. Figure 5c illustrates the
flow chart for the entire process, including incorporation of transformation plasticity effects
from dispersed austenite in the matrix.

A primary goal of this research is to find the effects of inclusion particles on toughness,
which is determined by the particle chemical composition, interfacial strength, size and spa-
cing. For Ultra-High Strength steel, inclusion particle phases of particular interest are Ti(C,N),
(Mg, Mn)S, Ti2CS, M2C, M7C3, M23C6 [57]. According to the results of Argon et al. [16, 58,
59], TiC and TiN are particularly adherent. They are a focus of this research.

With respect to computational methodologies, the following four issues are crucial for the
desired goals:
1. first principle analysis
2. two-level cell modeling
3. austenite-martensite transformation – transformation induced plasticity (TRIP)
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Figure 5b. The multi-level cell model.

Figure 5c. The flow chart of the bottom-up approach introduced in Fig. 5a.
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4. fracture toughness simulation
In the present work, the simulation of TRIP is essentially following the approach proposed
in [60–62]. We focus here on the bridge between quantum analysis and continuum simu-
lation. For the references regarding computational mechanical approaches of heterogeneous
materials, we refer to [55, 63–71].

4. Nanometer scale: first-principle simulation and bridge to continuum mechanics

The fundamental approach of the first principle simulation is introduced in [7, 11] based on
density functional theory. Cutting-edge problems in steel design require multi-disciplinary
efforts.

Under our collaborative research program, the study of a coherent patch of a Fe-TiC inter-
face was first performed by Freeman and coworkers [17, 72] using FLAPW[11, 117, 118]. In
this study, we have examined both normal separation (2.1–2.2) and shear sliding (2.3–2.4) in
the iron matrix and computed the Fe-TiN interfacial separations. We have also explored the
{001}Fe

(bcc)

∥∥ {001}TiC
(fcc) interface with normal separation from the Fe-Ti site configuration with

sliding, the Fe bcc crystal shear fault energy on the
(
11̄1

)
plane and normal separation with

empty sites using the linearized augmented plane wave code based on [8]. These computa-
tions, in conjunction with the results from our collaborations [17, 72] and the literature [73,
74], provide a clear picture of the decohesion process at this interface.

4.1. TIC-FE AND TIN-FE INTERFACES

Many transition metal carbides and nitrides, e.g. TiC and TiN, can have the NaCl FCC struc-
ture. This class of particles can display high adherence with a BCC iron matrix to promote
toughness. Following the work of Freeman and coworkers [17] we consider the {001}Fe

bcc

∥∥
{001}TiC

fcc , {001}Fe
bcc

∥∥ {001}TiN
fcc , and {001}Fe

bcc

∥∥ {001}TiN
fcc interfaces with the possible arrangement

of Fe-C, Fe-N or Fe-Ti sites. The results are listed in Table 1, from which we found that at
Fe-C and Fe-N sites the Fe is well bonded with the carbide/nitride, whereas at Fe-C and Fe-N
sites it is not. According to the difference in energy of these two cases, we obtain an estimate
of (2.4) for sliding at the Fe-TiC and Fe-TiN interfaces, i.e. in (2.10):

Eγ

(
λγ

) = AS sin4

(
πλγx

b

)
sin4

(
πλγy

b

)
(4.1)

and

AS |Fe/T iC =
(

λNγ0

λN

)6 (
γF |Fe−C − γF |Fe−Ti

) ;

AS |Fe/T iN =
(

λNγ0

λN

)6 (
γF |Fe−N − γF |Fe−Ti

)
where λNγ 0 is the atomic distance at equilibrium coherent state, b is taken as the average of
the lattice constants of TiC(0.4332 nm)/TiC(0.4532 nm) and Fe(0.407 nm); λγx , λγy are the
projections of λγ on the x and y axis in Fig. 6c, respectively; when λSx = λSy = 0, it refers
to the Fe-C site or Fe-N site.
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Figure 6. The primitive cells of TiN//Fe [100] interface computation. (a) Ti-Fe site; (b) N-Fe site; (c) top-down
view (

[
001̄

]
) of the Fe//TiN interface with the neighboring Fe layer and TiN layer where Fe atoms sit on the saddle

point of TiN crystal; Fe-N site: the Fe crystal moves as indicated by the vector ā; Fe-Ti site: the Fe crystal moves
by the vector b̄

4.2. DECOHESION NORMAL TO (111) IN BCC IRON

The atomistic cell of iron matrix is illustrated in Fig. 7a, where the primitive vectors take the
form

ā = −x̂ + ŷ, b̄ = −ŷ + ẑ, c̄ = x̂ + ŷ + ẑ (4.2)

with an origin at
(
x̂, 0, 0

)
. Presuming the six outer surfaces of the cell to be rigid, peri-

odic boundary conditions are imposed on the two surface pairs {0, yb̄, zc̄} and {ā, yb̄, zc̄}
as well as {xā, 0, zc̄} and {xā, b̄, zc̄}; where (x, y, z) are the coordinates defined in the system
{ā, b̄, c̄}. Also an additional constraint is imposed that the system is central symmetric to the
axis defined by the vector [−ā, b̄, 0] in the plane {xā, yb̄, c̄/2}. The surfaces {xā, yb̄, 0} and
{xā, yb̄, c̄} are enforced to move oppositely normal to the (111) plane. For the case with
two-empty sites, the two middle grey atoms with black point inside are taken away. The
atomistic cell is periodically reproduced throughout space. The 12×12×1 k-point mesh with
the Monkhorst and Pack scheme is applied in the simulations.
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Table 1. Surface energies and equilibrium separations – results of first principle
calculations

decohesion surface interface 2γF (J/M2) λN0(nm) source

{001}Fe
bcc

∥∥∥ {001}TiC
fcc Fe-C site 3.82 0.213 [17, 72]

{001}Fe
bcc

∥∥∥ {001}TiC
fcc Fe-Ti site 0.61 0.361 [17, 72]

{001}Fe
bcc

∥∥∥ {001}TiN
fcc Fe-N site 3.631 0.251 this work

{001}Fe
bcc

∥∥∥ {001}TiN
fcc Fe-Ti site 0.55 0.389 this work

{111} perfect 5.43 0.094 this work

{111} perfect 5.38 0.0809 [74]

{111} two-empty sites 1.1 0.241 this work

4.3. RESULTS FOR NORMAL SEPARATION

The results are summarized in Table 1. The computed corresponding energy-separation curves
are plotted in Fig. 7b.

4.4. PLASTICITY-INDUCED SLIDING

The stacking fault energy barrier γUS is a crucial parameter of material strength. According
to (2.3), the ratio of γS/γUS determines the mode of separation, which influences toughness.
When γUS < γS , dislocation induced sliding occurs. A dislocation core is equivalent to an
empty site that reduces the decohesion energy significantly for normal decohesion, see Fig. 7b
and Table 1.

In a bcc crystal, slip along {110} planes in the 〈111〉 direction is commonly observed.
A

[
1̄1̄1

]
shear fault can be decomposed into the following three steps:

a

2

[
1̄1̄1

] → a

8

[
1̄1̄0

] + a

4

[
1̄1̄2

] + a

8

[
1̄1̄0

]
(4.3)

which is formed by a zigzag path on the
(
11̄0

)
plane.

As illustrated in Fig. 8a, an atomistic cell is designed to represent the periodic repeated
motion of (4.3). Its primitive vectors, which are originated as

(
0, ŷ, ẑ

)
, take the form

ā = a

2

[−x̂ − ŷ + ẑ
]
, b̄ = −a

2

[
x̂ + ŷ + ẑ

]
,

c̄ = a

2

[
(1 − q) x̂ − (1 + q) ŷ − g (q) ẑ

]
(4.4)

where q varies from 0 to 1, representing the evolution of sliding; and

g (q) =




1 q < 0.25
3 − 4q

2
0.25 ≤ q < 0.75

0 q ≥ 0.75
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Figure 7. a) atomic cell for {111} plane separation in BCC iron crystal; b) the computed energy-separation
relations for three cases.

The computed energy-sliding relation is plotted in Fig. 8b, which demonstrated the energy
barrier γUS for the motion of a/8

[
1̄1̄0

]
is about 0.31 J/m2 and the γUS for a/4

[
1̄1̄2

]
is about

0.43 J/m2.
Recall Rice’s criterion (2.3):

γF

γUS
κR (φ) > 1 (4.5)

where κR (φ) ≈ 0.3. Comparing Fig. 8 and the results listed in Table 1, we conclude that
at the Fe-C site of the TiC/Fe interface, relation (2.3) is satisfied so that the sliding induced
separations demonstrated in Fig. 2b dominate decohesion.
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Figure 8. a) The atomistic cell of the motion of
[
1̄1̄1

]
dislocation; b) The energy vs. dislocation core position ‘q’

for the motion of
[
1̄1̄1

]
dislocation.

5. Two-level cell model and hierarchical consitutive law

For the theory of constitutive modeling of heterogeneous systems, we refer to [61, 75–85].
Our cell model approximation represents inclusion particles as periodically distributed in

the alloy matrix. For different spatial arrangements of the particles, several representative cells
are illustrated in Fig. 9. The Bishop-Hill relation[78]:

�ij = 1

Vcell

∫
Vcell

σ cell
ij dV ; Ėij = 1

Vcell

∫
Vcell

ε̇cell
ij dV (5.1)

are employed in the analysis which establishes the relationship between the homogenized
average stress/strain (�ij, Eij) response and cell stress/strain (σ cell

ij , εcell
ij ); the latter is asso-

ciated with parameters such as the material properties of the cell matrix and particle, the
interfacial cohesion, and the size effects of the cell; the former is used to obtain a homogenized
constitutive relation at a larger scale. Both two dimensional and three dimensional cells are
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Figure 9. The cell model: a) Three classes of periodic distributions of inclusions; b) boundary conditions imposed
in cell modeling.

analyzed. The methodology of computational cell modeling introduced in [86] is applied in
this analysis.

5.1. TIC/FE AND TIN/FE INTERFACIAL TRACTION-SEPARATION LAW

Based on the discussion in the subsections 2.1.3–2.1.4, by applying the re-scaling factor κ =
0.2 in (2.10) to the results listed in Table 1, we obtain the estimated normal traction-separation
laws of Fe-TiC interface which are plotted in Fig. 10, where the curve with maximum stress
peak is the Fe-C site separation between Fe and TiC while the one with the lowest peak
stress is for the Fe-Ti site on the Fe/TiN interface. The maximum acting normal stress during
plastic flow of the matrix is around (1 + √

3)σflow where σflow is the flow stress of iron matrix,
consistent with earlier analysis [15, 16].

5.2. SUB-MICRO CELL MODEL

When the particles with the diameters 2–300 nm are taken into account, the inclusions repres-
ent the secondary particles and the cell model is considered sub-micro scale.

The sub-micro cell simulation aims at:
1. investigating the effects of particles and debonding behavior on the micro stress-strain

response;
2. establishing the corresponding constitutive model that is applied as the matrix material in

a micro-scale cell model.
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Figure 10. Interfacial debonding/decohesion law applied in cell modeling.

The Particle Dynamics is applied in the sub-micro scale cell model. At the structural
particles level (Figs. 4d–e), the entire alloy matrix is treated as a grain and the inclusions are
to be other grains. The interfacial decohesion curves shown in Fig. 10 establish the particle
potential (2.30).

Figure 11 shows a measured stress-strain curve of a commercial modified 4130 steel stud-
ied in collaboration with Caterpillar Technical Center employing both uniaxial tension and
pure shear tests [87, 88]. Under the pure shear condition no significant debonding between
primary inclusions and alloy matrix had been found and the material fractures entirely by
micro-voiding at secondary particles. The equivalent stress-strain curve applied in the sim-
ulation is obtained by combining both tension and shear tests, where the former governs
the deformation before onset of bifurcation while the shear test provides the information
at the post-bifurcation stage. The TiC is taken as a model for the particle phase obeying
linear elasticity with the Young’s modulus three times that of the alloy matrix. The interfacial
traction-separation laws are built into the bonds connecting the ‘molecular’ particles of the
two phases. Various boundary conditions are imposed and the average stresses and strain rates
are measured which are defined by the Bishop-Hill relation (5.1).

Plotted in Fig. 12 are a set of snapshots of the sub-micro equivalent plastic strain contours
during debonding and the corresponding micro shear stress-strain response. The cell is under
shear dominant boundary conditions; however, it can cause a localized normal separation
force. These results demonstrate that once localization is incipient along the shear band con-
necting two particles, it triggers a fast debonding and a sudden drop of the micro-scale stress.
Included in Fig. 13a is an experimental observation, which demonstrates the coalescence of
micro voids within such a shear band.

It is well-known that parameters such as volume fraction, orientations and distribution
of secondary particles, as well as stress state and decohesion energy, determine this sub-
micro cell’s deformation and failure behavior. According to the computational results plotted
in Fig. 12, we conclude that among these parameters the decohesion energy is especially
important. Plotted in Fig. 13b is a set of computations where the decohesion energy varies
from zero (corresponding to the case of voids) to the upper bound value (Fe-C site) while the
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Figure 11. The uniaxial stress-strain curve of the modified 4340 steel.

spacing and volume fraction of the secondary particles are fixed. If we use the micro scale
strain Emicro

12 at debonding as a critical parameter for the micro stress-strain law, from Fig. 13b
we find that this debonding strain increases substantially as the decohesion energy rises. When
the decohesion reaches its upper bound for TiC (3.8 J/m2), no debonding takes place at all. In
this computation the cell is under a shear-dominant load with slight additional triaxial tension
(about 10% of shear stress).

Figure 14 shows the 3D simulation performed by finite element, which is used to test the
model and the parameters set-up.

By combining the numerical results, the methodologies of cell modeling and multi-scale
analyses, a general multi-scale constitutive model has been developed. This model couples
interfacial debonding, void nucleation and growth, localization with strain gradient effects
and phase transformation. For an isotropic material, it can be simplified as:


plasticity

(
f0, f, σij

) =
(

σ̄

σintr

)2

+ A0
σm

σintr
+ A1 (f + g1) exp

(
− σm

σintr

)

+ A2 (f + g2) exp

(
σm

σintr

)
− (

q0 + q1 (f )2) (5.2)

= 0

where σij, σ̄ , σm f0 and f denote in turn the stress tensor, equivalent stress, mean stress,
inclusion and void volume fraction at a given scale; σintr denotes the ‘matrix intrinsic strength’
that contains the effects of internal variables associated with post-bifurcation and phase trans-
formation; the constants Ai and qi are calibrated through cell model.

When the constants Ai and q1 in (5.2) vanish, this potential degenerates to the conventional
J2 plasticity except the yield strength is replaced by ‘

√
q0σintr’. Relation (5.2) becomes a

‘Druck-Prager-like’ plastic potential when A0 is non-zero, and converts to a ‘Gurson-like’
model when A0 = 0 but A1 = A2 and g1 = g2 = 0. More details can be found in [89, 90].
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Figure 12. Snap-shots of the localization induced debonding process.

Figure 13. a) observation: localization induced decohesion [J. F. Mescall (US Army Mat. Lab)]; b) The effect of
decohesion energy on the global stress-strain curves.

Figure 14. Three-Dimensional Cell Modeling.
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Table 2.

g0 g q α1 α2 f II
c K II

1.5 2 −0.33333 1.06 0.2 0.05 3

For the modified 4340 Steel, the micro-scale plastic potential is derived as follows [91]


sub−micro

(
f II

0 , f II, �micro
ij

) =
(

�̄micro

σflow

)2

+ (
f ∗ (

f II
))g

g0 exp (χ1)

− 3σY0

σflow

(
1 + (

f ∗ (
f II

))g
q
)

(5.3)

= 0

where �̄micro is the equivalent stress of �micro
ij ; f II

0 is the volume fraction of the secondary
particles, f II is the volume fraction of the voids nucleated from f II

0 , f ∗ (
f II

)
is the damage

evolution function defined by Tvergaard [92]

f ∗ (
f II

) =



0 f II < f II
0

f II f II
0 ≤ f II < f II

c

f II
c + K II

(
f II − f II

c

)
f II ≥ f II

c

(5.3a)

and theχ1 in (5.3) are the functions defined as

χ1 = α1ζ

(
�micro

m − �
γ
max

σY0

)
+ α2ζ

(
�̄micro − �US

max

σY0

)
(5.3b)

where �micro
m is the mean stress of �micro

ij ; α1 and α2 are constants, α1 = 1.06, α2 = 0.3.
�

γ
max is the strength against the normal separation of the interface between alloy matrix and

secondary particles, i.e., the peak stress in traction-separation law in Fig. 10. �US
max is the shear

strength against sliding. The function ζ in (5.3b) is defined as follows:

ζ (x) =
{

x if x ≥ 0
0 otherwise

(5.3c)

The constants in (5.3), (5.3a), and (5.3b) obtained by fitting to tensile data and the critical
microvoiding strain measured in shear tests are listed in Table 2.

5.3. MICRO-CELL MODEL

The constitutive model (5.3) is next embedded into the matrix of the cell that contains a
primary particle with a size around 1–2 micron, as plotted in Fig. 15b. This representative unit
cell is used to obtain the macro-scale stress strain relation (�ij, Eij). In the steel of interest, the
frequently found primary particles are titanium nitrides (TiN) of cuboidal shape (Fig. 15a),
represented in the model as square.

Experimental research reveals that the debonding between large nitrides and the alloy
matrix can be promoted by the segregation of impurity elements such as sulfur to the nitride in-
terface, which reduces the interfacial strength significantly. The traction-separation law (2.10),
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Figure 15. Micro-scale cell modeling: a) TiN[87]; b) micro-scale cell; c) localization induced decohesion.

Figure 16. Macro-scale stress-strain response with varying volume fraction of nitrides.

calibrated according to the experimental peak value given in [88], is applied in simulation.
A typical debonding-localization phenomenon for this class of cell and the corresponding
slip-field are illustrated in Fig. 15b

Plotted in Fig. 16 are a set of computed macro-scale stress-strain curves for varying inclu-
sion volume fraction.

The macro-scale stress-strain response in Fig. 16 demonstrates three stages of the cell
failure: I) elastic deformation and yielding; II) debonding/decohesion between large inclusions
and the alloy matrix; III) post-bifurcation/softening. Different from Fig. 13b, two stress drops
appear in the stage II in Fig. 16. This is caused by the debonding at two perpendicular surfaces
of the square nitrides. The stress and strain at the onset of stage III, as well as the slope in the
subsequent softening, are crucial for the failure behavior of the material. A challenge is how to
implement the phenomena reflected in Fig. 16 into an applicable constitutive law. We discuss
this issue in the following subsection.
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Figure 17. Two microscopic elements: virtual bond and shear slice.

5.4. COUPLING AND MACRO-SCALE CONSTITUTIVE LAW

The homogenized stress-strain responses from both micro and sub-micro scale cells have sim-
ilar features as illustrated in Figs. 13b and 16. These stress-strain responses are characterized
by three turning-points: (1) initial yielding, (2) debonding, (3) and the onset of strain soften-
ing. By varying the shape, size and distribution of the primary/secondary particles and the
decohesion energies, shape of the stress-strain curve and position of these three turning-points
vary. This provides the possibility to predict an optimum combination of particle parameters
in microstructural design.

To obtain desired fracture toughness, the stress-strain response after the onset of softening
plays a significant role in crack growth simulation, which actually reflects the final stage of
the coalescence of voids. In the framework proposed in this paper, a concurrent model is
introduced and described as follows.

Material resistance against void coalescence is determined by the strength of the ligaments
between these voids [89, 93]. The deformation tolerance and the failure of the matrix ligament
are determined by two basic deformation modes: localization induced necking under normal
stress and shear localization caused by the shear stress component. Consequently, we postulate
that the matrix can be divided into two parallel groups of microscopic elements. The first
group can be considered as a virtual bond network built in the alloy matrix; the second group
is assumed to be a superposition of imaginary micro slices that correspond to slipping systems
of different orientations (see Fig. 17). In each bond or slice, the strain gradient theory-based
[94, 95] one-dimensional localization solutions for tension or pure shear[45] are applied. In
this class of solution the material intrinsic length scale ‘l’ [94, 95] is included and the ef-
fects of geometrically necessary dislocations are taken into account. For isotropic materials, a
multi-dimensional stress-strain behavior can be characterized through uniaxial and pure shear
strain gradient theory-based solutions, which is represented by the material intrinsic strength
σintrpresented in (5.10). It provides the matrix material properties after the onset of strain
softening in the micro-scale cell model (see Fig. 18), in conjunction with primary particles
and the subsequent damage evolution.
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Figure 18. The strain gradient theory-based strain softening solution for the microscopic elements in Fig. 17,
where l denotes the micro-scale length [95] that scales the dissipation during post-bifurcation deformation [45].

Table 3.

A0 A1 A2 g1 g2 q1 q0

0.0666 0.85 1.7 0.01 0.01 2.65 1.0255

Based on the concurrent model and numerical results, by rewriting (5.2) at this scale we
obtain a macroscopic plastic potential:


macro =
(

�̄

σintr

)2

+ A0
�m

σintr
+ A1

(
f I + g1

)
exp

(
− �m

σintr

)
+ A2

(
f I + g2

)
exp

(
�m

σintr

)

−
(
q0 + q1

(
f I

)2
)

(5.4)

= 0

and the associated flow law:

Ėp = λ̇
∂
macro

∂�
(5.5)

where λ̇ is the ‘flow factor’, �̄ and �m denote the macro-scale Cauchy equivalent stress and
Cauchy mean stress, respectively; f I represents the void volume fraction which is considered
as ‘damage’; A0, A1, A2, g1, g2, q0 and q1 are dimensionless material constants listed in the
Table 3. The evolution laws of damage nucleation and growth introduced in [96] and the
material parameters of the modified 4340 steel presented in [88] are applied in this work.

The plastic potential (5.4) is a macro scale, J2-like plasticity with damage. The concurrent
model associated with the mechanisms in Figs. 17–18 is described by ‘σintr’ in (5.4), which
is termed ‘matrix intrinsic strength’. It is defined as the combination of a material strain
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hardening/softening law and the strain gradient-based traction-separation law:

σintr =
{

σ̄ strain hardening/softening Ēp ≤ [
Ē

]bifurc

T
(
Ỹ , l, η

)
decohesion softening Ēp >

[
Ē

]bifurc (5.6)

where Ēp is the plastic part of the equivalent strain and
[
Ē

]bifurc
denotes Ēp at the bifurcation

point of the σintr
(
Ēp

)
relation. lis the material intrinsic length scale defined as the product of

Burger’s vector b and the initial yield strength σY0; η is the equivalent strain gradient [97]:

l = 3

(
E

σY0

)2

b; η =
√

1

2
uk,ij uk,ij (5.7)

where E is Young’s modulus; and the strain-like parameter Ỹ is defined by

Ỹ =
(
Ēp − [

Ē
]bifur

) l

l0
(5.8)

where l0 is a material constant, of the same order as the spacing between primary particles.[
Ē

]bifurc
marks the transition between the two stages of deformation: the uniform deformation

with damage nucleation and growth and the failure of the ligaments between these defects.[
Ē

]bifurc
can be calibrated to the maximum stress on the σintr

(
Ēp

)
curve from the uniaxial

tension test. During the second stage, the effect of the material intrinsic length scale, strain
gradient, and strain rate are incorporated in σintr as:

T = σY0 · T̃ (
Ēp, l, l0

) ·
√√√√[

σhom
(
Ēp

)
σY0

]2

+ lη (5.9)

The second term in (5.9) is the traction-separation law derived from the strain gradient-based
localization solution at the micro scale; the third and fourth terms reflect, in turn, the strain rate
effect and the material hardening due to the strain gradient at macro scale. As the micro scale
localization, representing ligament failure, is described by T̃ in (5.9), the stress-strain response
without bifurcation, denoted by σhom

(
Ēp

)
, appears under the square root of the fourth term.

Based on the analytical solution described in [89], a fitted expression of T̃ can be expressed
as

T̃ = −0.5398Y 2 + 1.5867Y − 0.0466

1 − ktr

(5.10)

where

Y = exp

{
106 ·

(
Ỹ

) 11
5

}
; ktr =

∣∣∣∣σI − 3σm

2σI

∣∣∣∣ and ktr < 1.

6. Fracture toughness simulation

Using the methodology introduced in the previous sections, the hierarchical constitutive model
is derived with the plastic potential, in which the interfacial debonding, the interaction between
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voids and inclusions, the effects of strain gradient, strain rate, and the damage in the form of
voiding are taken into account [83, 95, 98]. This constitutive model has been implemented
into a meshfree code [26, 31, 99] and the middle cracked panel under tension (MT) has been
simulated. The specimen size and geometry are designed according to ASTM standard, which
has been applied in the simulations in [86, 100].

Figure 19 presents two snapshots of 3D crack propagation. Figure 20a shows the contours
of equivalent plastic strain around a blunted crack tip at small-scale yielding, where the Rice-
Johnson type crack tip strain field is present. Figure 21b is the contours after considerable
crack growth with large deformation. In this computation the primary particles (TiN) are expli-
citly embedded into the matrix that includes the secondary particles. Plotted in Fig. 21c is the
corresponding load-CTOD curve, where a black square indicates the CTOD at crack growth
initiation which defines the fracture toughness of the material. Figure 20b demonstrates that
the introduced numerical methodology is capable of capturing this class of phenomenon. On
the other hand, it also reveals that the computational results depends on factors such as the
geometry and distribution of inclusions, which may not be covered by the periodic cell models
in Fig. 9.

7. Conclusion

The methodology introduced in this paper provides a ‘ductile fracture simulator’, summar-
ized in Fig. 21. Starting from the left-lower corner, the quantum mechanics analysis ([72]
and the results listed in Table 1) explores the fundamental atomistic-electronic structures
of alloy matrix and the interface to inclusions, which provides the corresponding energy-
adhesion relations that are applied in the sub-micro and micro scale cell models to obtain
the corresponding homogenerized constitutive relation (5.2–5.5) for the effective material at
each scale. For the modified 4340 steel, the computational results have been calibrated by
experiments. The constitutive law (5.4) of a voiding/microvoiding steel is established based
on the analysis of the cell models, which is implemented to compute the corresponding crack
parameters such as the crack tip opening displacement (COD, see Fig. 20a) and the J-integral
using the method introduced in [101, 102]. The COD (or J-integral) at crack growth initiation
represents the fracture toughness of the material. The simulated results are summarized by the
TSA Diagram at the right-upper corner of Fig. 21, which provides an insightful correlation
among the steel strength, interfacial decohesion, and fracture toughness.

The TSA Diagram at the right-upper corner of Fig. 21 is detailed in Fig. 22. In Fig. 22a
the first principle-based traction-separation relations are plotted at various adhesion energy
levels. Obviously higher adhesion energy results in higher peak decohesion stress. Figure 22b
is the Toughness-Strength-Adhesion (TSA) diagram corresponding to the traction-separation-
adhesion curves presented in Fig. 22a.

In the TSA diagram (Fig. 22b) the lines that start from origin and bend up represent the
computed load – crack tip opening displacement (σ

/
σref ∼ CT OD) curves for the middle

cracked panel under tension made of the steel with primary/secondary inclusions and alloy
matrix with yield strengths set at 0.3 GPa, 0.5 GPa, 0.7 GPa, 0.9 GPa and 1.03 GPa. The
simulations are performed using the proposed hierarchical multi-physics constitutive model
(5.1–5.3). Along each σ

/
σref ∼ CT ODcurve the solid diamond, triangle, circle, and square

denote in turn the CODi (the COD at crack growth initiation), corresponding to the different
levels of decohesion energy on the interface between alloy matrix and primary particles which
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Figure 19. A simulation of crack growth: contours of equivalent stress and load-CTOD curve.

Figure 20. A simulation of crack growth: contours of equivalent stress and load-CTOD curve.

Figure 21. Ductile Fracture Simulator.
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Figure 22. Toughness-Strength-Adhesion (TSA) Diagram for Steel Design. a) interfacial traction-separation
relations with varying decohesion energy; b) TSA Diagram where CODi refers the COD at crack initiation.

are illustrated in Fig. 22a. The solid lines indicate the variation of fracture toughness when the
decohesion energy is fixed but the strength of the alloy matrix is varied. For example, at the
decohesion energy of 0.6 0J/m2, the right most circle denotes the COD at crack initiation
for the matrix with the yield strength of 1.03 GPa. Similarly, the left most circle on the line
with 0.6 J/m2 denotes the COD at crack initiation for the steel with the matrix yield strength
0.5 GPa.

In the simulations presented in the TSA diagram the diameters of the primary TiN particles
are 1 to 2 µm with the volume fraction of 0.025% and 0.1%, respectively; the diameters
of the secondary particles are from 20 to 200 nm with the volume fraction from 0.02% to
0.2%. Under this situation, the computation shows that fracture is strongly influenced by the
decohesion-debonding of the primary TiN particles as affected by the adhesion energy.
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The diagram of Fig. 22b gives quantitative relations among three key parameters (T-S-A).
It is well-known that strength and toughness are competing properties for steels. Figure 22b
reveals that increasing adhesion energy is a way to improve fracture toughness while maintain-
ing strength. However, the TSA diagram also indicates that the toughening effect of adhesion
energy is relatively reduced at high strength.

The TSA diagram in Fig. 22b, in conjunction with the analyses presented in the previous
sections, provides several guidelines for steel design:
1. Both interfacial adhesion energy and strength ratio are crucial for obtaining high toughness

with high strength. A quantitative description of these relationships is given in Fig. 22.
2. Large inclusions (>1µm) with limited interfacial strength are a major cause of lower

toughness.
3. For smaller dispersed particles, dispersion spatial uniformity may be particularly important

for enhanced toughness.

Note

1. This method is also termed ‘Quasi-Particle Method’ in authors’ other publications.
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APPENDIX A: Overview of Quantum Mechanics and Density Functional Theory [5, 6,
11, 114, 117]

Classical physics views an atom as a nucleus at a fixed point surrounded by moving electrons
along fixed orbits. The momentums and positions of nuclei and electrons can be determined
exactly according to Newton’s laws.

Quantum mechanics explains natural phenomena through another philosophy. The De
Broglie hypothesis ascribes a wave property to the particles such as nuclei and electrons. The
Heisenberg uncertainty principle puts forth that, when the momentum of a particle is known
precisely, the position of the particle is completely unknown. The state of such a particle is
defined by Hamiltonian Ĥ, the operator corresponding to the energy of a particle with mass
m:

Ĥ = − h̄2

2m
∇2 + V (r) (A1)

where r is the position vector and V (r) is a potential field. The eigenvalue equation for Ĥ:

Ĥϕi (r) = Eiϕi (r) (A2)
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is called the time-independent Schrödinger equation; where Ei is the ith eigenvalue and ϕi (r)
the ith eigenfunction. Under this state the expectation to find the particle at position x is

〈x〉 =
∞∫

−∞
rϕ∗

i (r) · ϕi (r) d3r =
∞∫

−∞
r |ϕi (r)|2 d3r (A3)

For a many body system, it is usually very difficult to get an analytical solution of (A2)
because the potential V (r) is dependent on the interaction among particles.

The Thomas-Fermi model approximates the system as a combination of static atoms which
form crystal and electronic gas is filling in between. The Hohenberg-Kohn [5] and Kohn-Sham
[6] theory states that the total energy Etotal of a system depends only on the electron density
of its ground state:

Etotal = Etotal (ρ (r) , Rα) (A4)

where Rα are the position of all atoms in the system under consideration; the electron density
ρ is a scalar function defined as:

ρ (r) =
∑

i

|ϕi (r)|2 (A5)

The Hohenberg-Kohn-Sham theorem, the central of the density functional theory, states
that the total system energy gets its minimum value for the ground state density, denoted as
ρ0, and that the total energy is stationary with respect to its first order variations in the density,
i.e.:

δEtotal [ρ]

δρ

∣∣∣∣
ρ=ρ0

= 0 (A6)

By varying Etotal with respect to each wave function, this leads to the Kohn-Sham equation:

Hψi (r) = εiψi (r) H = − h̄2

2m
∇2 + Veff (r) (A7)

where ψi (r), the solution of Kohn-Sham’s equation, form an orthonormal set; and the effect-
ive potential is

Veff (r) = VC (r) + µXC (ρ) (A8)

here VC (r) is the Coulomb potential; for a condensed system like a metal VC (r) can be solved
through Poisson’s equation [11]:

∇2VC (r) = −4πe2q (r) (A9)
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where the q (r) denotes the positive point charges of nuclei at position Rα and the electronic
charge density ρ (r) in the rest:

q (r) =
{

Zr at Rα

ρ (r) otherwise

The exchange-correlation potential µXC (ρ) is related to the exchange-correlation energy that
can not be solved directly in the same way as VC (r). Under the ‘local density approxima-
tion’(LDA) the explicit form of µXC (ρ) has been derived, e.g. in [103, 104]:

µXC (ρ) = −2

(
3ρ

π

) 1
3

− 0.0225 ln

(
1 + 21

(
4πρ

3

) 1
3

)
(A10)

One way to solve (A7), one way is to expand the unknown wave function solutions ψi (r)
as a linear combination of a set of known functions with unknown coefficients cij:

ψi (r) =
∑

j

cijφi (r) (A11)

Substituting (A11) into (A7) leads to the following matrix problem

[
H̄ − εS

]
· c = 0 (A11)

where H̄ is the Hamiltonian matrix and S is the overlap matrix:[
H̄ij

] =
∫

φ∗
i · H · φjdr; [

Sij

] =
∫

φ∗
i φj dr (A11a)

in the first relation of (A11a) the H is defined by A7.
The solution procedure is illustrated in Fig. A.1
In a periodic structure such as a crystal, according to the Bloch theorem the wave function

solution ψi depends upon both position vector r and the reciprocal vector k:

ψi (r + mG, k) = eik·Gψi (r, k) (A12)

where G is the primitive vector of the lattice and m is an integer. The corresponding electron
density yields the integration over the first Brillouin zone:

ρ (r) =
∫

1st BZ

ϑ [EF − εi (k)] |ψi (r, k)|2 dk (A13)

where the step function ϑ insures that only occupied states below the Fermi energy EF are
counted.
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Figure A.1. Flow chart of the solution procedure of DFT.

APPENDIX B: Co-Rotational Formulation in Finite Deformation

The co-rotational formulation introduced in [47, 105] is applied in the analysis presented in
this work. We use bold-faced x to represents the coordinate of a material point in a refer-
ence coordinate system, i.e. the Lagrange configuration; and bold-faced y to represents the
coordinate of a point in the spatial (Euler) coordinate system. Obviously:

y = y (x, t) (B1)

Consider a line element vector dr0 in the reference configuration, after deformation it
becomes the line element dr in the spatial configuration. The deformation gradient is defined
by

F (x, t) = ∂y
∂x

(B2)

which uniquely determines the line element transformation between the two configurations:

dr = Fdr0 (B3)
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Using this relation we can also derive the transformation of an area or a volume between
two configurations. When we assume finite deformation without diffusion, then F is non-
singular and can be decomposed multiplicatively as the product of two other positive definite
tensors:

F = RF · UF (B4)

where RF is the orthogonal, positive definite, tensor of pure rotation from configuration x to
y; UF is the positive definite tensor of pure stretch during deformation. The discussions of
the transformations (B1–B4) in crystal plasticity and atomistic simulation can be found e.g.
in [106–108].

The material derivative of Eq. (B2) leads to

Ḟ (x, t) = ∂ ẏ
∂y

· ∂y
∂x

= L · F with L
def= ∂ ẏ

∂y
= ∇v (B5)

here we adopt ∇ to represent the gradient operator in the spatial configuration and v = ẏ, i.e.
the velocity. So L is called the ‘velocity gradient’. L and Cauchy stress σ build a conjugate
energy pair . In general, the rate constitutive relation of a material can be written as:

σ̇ = C : L + S : Lskew (B6)

where C is a material tangent matrix and Lskew represents the skew-symmetric part of L. The
product S·Lskew reflects the change of stress state due to rigid rotations, therefore Eq. (B6) is
‘non-objective’.

In numerical analysis, when a body deforms from step n to step n+1, its spatial coordinate
yn+1may be written as a function of the configuration at step n and the step length �t :

yn+1 = yn+1 (
yn,�t

)
(B7)

The displacement increment of this point over the step is

�u = yn+1 − yn (B8)

An incremental form of the velocity gradient defined in Eq. (B5) is:

L = 1

�t

∂�u
∂yn+1

(B9)

The key idea of the co-rotational formulation is to split one increment into two steps, i.e.
rotation and pure deformation. Consider the configuration at yn as the reference configuration:

Ḟ
(
yn, t

) = Ḟ
def (

yn, t
) · Ḟ

rot (
yn, t

)
(B10)

From Eq. (B4) it is known that

Ḟ
rot (

yn, t
) = R · I and Ḟ

def (
yn, t

) = ∂yn+1

∂yn
·Ldef =

(
I + ∂�udef

∂yn

)
· ∂�udef

�t∂yn+1
(B11)
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where R defines the rotation from configuration yn to yn+1 and I represents the unit tensor. If
�udef is small enough, then the second relation in Eq. (B11) becomes

Ḟ
def (

yn, t
) = I · Ldef + o

(
Ldef

)
(B12)

The corresponding algorithm for integrating the constitutive equation is as follows:

σ̂
n+1 = RTσ nR

�σ = C : (�tLdef
)

σ n+1 = σ̂
n+1 + �σ

(B13)

The second relation in Eq. (B13) is ‘objective’ since there is no rotation.
A concise way to calculate R is given in [105] when the rotation is less than π during �t .

Consider a mid-deformation configuration:

yn+α = (1 − α) yn+1 + αyn with 0 < α < 1 (B14)

it has been proven, elsewhere, that

R =
(

1 + 1

2
ω

)
·
(

1 − 1

2
ω

)−1

; g = ∂�u
∂yn+α

; ω = 1

2

(
g − gT)

(B15)

where I is unit tensor. α = 0.5 is used in the Analysis.
The formulation listed above can be applied in both Lagrange configuration-based and

Euler configuration-based computation. When a Lagrange configuration is applied, the corres-
ponding derivative operations are derived in the reference configuration x while the velocity is
defined with respect to the current configuration yn+1, a transformation matrix J is necessary
for defining the large strain-velocity matrix B̃.

∂

∂yn+1
= ∂

∂x
· ∂x
∂yn+1

= ∂

∂x
· J (B16)

Because of

∂x
∂x

= ∂x
∂yn+1

· ∂yn+1

∂x
= I (B17)

Thus, we have

J =
[
∂yn+1

∂x

]−1

(B18)
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