
The Gurson-Tvergaard-Needleman-model for rate
and temperature-dependent materials with isotropic
and kinematic hardening

S. Hao, W. Brocks

Abstract Based on the upper bound solution of cell
models under dynamic or creep loading conditions, the
Gurson-Tvergaard-Needleman (GTN) constitutive law of
ductile fracture for rate and temperature-dependent
materials with isotropic and kinematic hardening has been
established. Two additional parameters, which account for
the in¯uences of strain rate, inertia and the average
distance between voids, have been introduced in the GTN
yield criterion. 2D and 3D analysis has been performed for
different metals. It can be concluded that the GTN model
is a powerful tool for crack growth analysis.

1
Introduction
Cell models are usually applied in two ways. The cell can
represent the smallest material unit that contains suf®cient
information of the failure process in a material. In this
case the dimensions of the cell must match the corre-
sponding microscope features of the material. Alterna-
tively, the cell can be considered as a structure in
microscale within the material. Solutions obtained for the
cell can be used to rationally link microscopic properties
and mesoscopic quantities, so as to establish a general
macroscale constitutive law for a damaged material in the
frame of continuum medium mechanics. The present work
considers the latter technique.

It has been observed experimentally that the dominant
processes of ductile fracture are void nucleation, growth
and coalescence. Based on the analysis of the upper-bound
solutions for the cells within a cylindrical and a spherical
void in a perfectly plastic material, Gurson has established
constitutive equations (i.e. a yield condition and a ¯ow
rule) for porous materials which depend on the void vol-
ume fraction as a additional internal variable. This model
has been further developed and modi®ed by Tvergaard
with respect to the yield condition and damage evolution
(Tvergaard 1981, 1982; Tvergaard and Needleman 1984),
and by Needleman to include the law of void nucleation
(Needleman 1987; Chu and Needleman 1980). It will,
therefore, be referenced as the Gurson-Tvergaard-

Needlemen (GTN) model in the following. The yield
function and plastic potential in the GTN model are ex-
pressed as:

U � R
r0

� �2

�2q1f � � ch
3q2Rm

2r0

� �
ÿ 1ÿ q3f �

2 �1�

where R and Rm denote he Mises stress and hydrostatic
stress on the mesoscopic scale; q1 � 1:5; q2 � 1; q3 � 2:25
(Tvergaard 1981, 1982) and r0 represents the yield
strength of the matrix. In (1) the modi®ed damage pa-
rameter f � is related to the void volume fraction f by
taking account of the accelerated process of coalescence
after reaching a critical void volume fraction, fc (Tvergaard
1981; Needleman 1987).

Due to the high nonlinearity of the problem the analysis
of damage is usually restricted to quasi-static and mono-
tonic loading and isothermal conditions, considering the
material to be and to remain isotropic. The rate and
temperature dependence of the mechanical behaviour and
the production of heat due to plastic deformation are ne-
glected. However, the effects of loading rate and temper-
ature change as well as kinematic hardening due to cyclic
deformation can be important in practice.

A numerical algorithm based on the Euler backward
method has been developed for a class of pressure-de-
pendent plasticity models by Aravas in 1987. For rate
dependent solids, a one step forward gradient time inte-
gration scheme was developed by Peirce et al. (1984).
Without the Tvergaard and Needleman modi®cations ac-
counting for the effect of void coalescence and stress
controlled nucleation, Pan et al. (1983) proposed a simple
empirical equation for the strain rate and temperature
dependence of the matrix material. This relationship was
used by Needleman and Tvergaard (1991) for the numer-
ical simulation of ductile fracture in isotropic materials
under dynamic loading. Brocks et al. (1995) studied the
transferability of the damage parameters for visco-plastic
materials by numerical cell-model calculations.

In the present report, a generalization of the GTN model
for a rate, temperature and pressure-dependent material
with mixed hardening (i.e. combined isotropic and kine-
matic hardening) is described based on the analysis of cell
models. The algorithm has been written as a user sub-
routine (UMAT) for the ABAQUS code (1994). To check
the accuracy and ef®ciency of the code, single element
numerical tests have been carried out and thereafter 2D
and 3D examples have been treated. In the following
analysis the standard notion adopted in Gurson (1977) and
Peirce et al. (1984) is used.
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2
Constitutive relations

2.1
Dynamic loading
Usually the strain rate of the matrix material can be de-
composed as:

_etotal
ij � _ee

ij � _emp
ij � _et

ij �2�

where the superscripts ``e'' and ``mp'' denote the elastic and
viscoplastic components and the superscript ``t'' repre-
sents the contribution to strain rate due to thermal ex-
pansion.

The associated ¯ow rule, i.e. the relation between mi-
croscopic stress and viscoplastic strain under dynamic
loading, is written as (Perzyna 1966; Gilat and Clifton
1985):

_emp
ij � _emp oF

orij
�3�

with

F � r � 3

2
r0ijr

0
ij
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�Von Mises yield function�
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;
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The visco-plastic strain rate relation can be expressed as
follows (Pan et al. 1983; Needleman and Tvergaard 1991):

r
g�T; emp� �

_emp

_emp
0

" #j

�5�

where _emp
0 is a reference strain rate, j is a material constant

and g�T; emp� speci®es the strain hardening characteristics
and their dependence on temperature T.

Under adiabatic conditions, from the energy balance _et

(the part of strain rate tensor due to temperature change)
is determined by (Needleman and Tvergaard 1991)

_et � a _TI and qc _T � 0:9 r : _emp �6�
where a is the thermal expansion coef®cient, I denotes a
unit tensor, c and q represent the heat capacity and density
of the reference con®guration.

In a kinematic strain hardening material, the back stress
tensor a is introduced as an additional internal tensor
variable which relates the shifted stress tensor b, to the
total stress r, by b � rÿ a. Thus, the ¯ow potential F and
the effective stress r in (4) are de®ned by:

F � r � 3

2
�r0ij ÿ aij��r0ij ÿ aij�

� �1=2

�7�

Ziegler's hardening rule is employed in the analysis:

_aij � l _emp oF

orij
� l _emp 3�r0kl ÿ akl�

2r
�8�

where l is a scalar function determined from the uniaxial
static stress-strain curve (Gilat and Clifton 1985).

2.2
Creep
Experimental observations (Riedel 1986) reveal that
damage by means of void growth and coalescence at grain
boundaries can dominate the process of creep failure. In
this case the total strain rate is decomposed as the sum of
four different parts:

_etotal
ij � _ee

ij � _ep
ij � _ec

ij � _et
ij �9�

The plastic strain rate, _ep
ij, can be determined by the rate

independent Prandtl-Reuss ¯ow rule. The ®rst relation in
(6) can be used to determine the thermal strain rate con-
tribution in general. The creep strain rate can be expressed
generally as in Riedel (1986)

_ec
ij � _ec FC1b0ij � FC2rImij

n o
�10�

where rI represents the maximum principal stress. FC1 and
FC2 are functions of i) rI , ii) equivalent stress r,
iii) damage and iv) material constants. The tensor mij is
de®ned such that its components in the co-ordinate sys-
tem of the principal axes of stress are zero except in the
direction of rI where mII � 1.

A simple form of (10) has been suggested by Kachanov
(1961) with

FC1 � r
�1ÿ x�r0

� �Nc 3

2r
; FC2 � 0 �11�

where x denotes the creep damage, r denotes the effective
stress, Nc and r0 are material constants.

3
Micromechanics and cell modelling

3.1
Average of microscopic quantities
As mentioned above, the temperature and strain rate-de-
pendence as well as the anisotropy have non-negligible
effects on the evolution of damage. To consider these ef-
fects a ``cell model'', which represents a very small unit of a
solid body, has been used to establish the relationship
between microscopic and mesoscopic behaviour, see
Fig. 1. A representative volume element �V� of a material
containing a volume of cavities, V�, is subjected to meso-
scopic stresses R or strain rate _R which induce micro-
scopic stresses r (or b) and strain rate _e at every point in
V . From the balance of energy mesoscopic quantities can
be expressed as the volume averages of the microscopic
quantities (Gurson 1977):

_Eij � 1

V

Z
v

_eij dV �12�

Rij � 1

V

Z
v

rkl
o _ekl

o _Eij

dV �13�
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In the following analysis we usually adopt, unless other-
wise indicated, small letters to symbolize the quantities in
micro-scale and capitals for the quantities in macro-scale.
Using (13) one may also de®ne the mesoscopic total,
shifted and back stresses, R;B, and A. Thus one obtains:

R � 3

2
B0ij : B0ij

� �1
2

; Rm � tr�R�
3

and Bij � B0ij ÿ dijRm

�14�
For rigid perfectly-plastic material, the upper-bound
solutions of the cells in Fig. 1 have been given in Gurson
(1977). Under dynamic condition, the solution of a
spherical cell as shown in Fig. 1a has been discussed in
Johnson (1981) and Freund (1992).

3.2
Cell model analysis: the dynamic solution
of the cylindrical cell model in Fig. 1b
In the analysis we shall neglect the effects of global ac-
celeration and velocity. In general the constitutive law and
the momentum balance equations can be expressed as a
set of ®rst order partial differential equations:

r
r � L : _etotal

rr � q
Dm
Dt

9>=>; �15�

where r
r

and L are the Jaumann stress rate tensor and the
tangent matrix of the material, respectively. t represents
time and Dm=Dt denotes the material derivative of the
velocity ®eld m. Generally speaking, for partial equations
like (15) a characteristic analysis can be applied. Consid-
ering the simple case of general plane symmetric defor-
mation and leaving out the effect of temperature change
caused by plastic dissipation, one has:

_err � dmr

dr
; _ehh � mr

r
; _ezz � const;

mh � _erh � _erz � _ehz � 0
�16�

The boundary conditions of the cell in Fig. 1b are given as
follows:

mr�r� � 0; for all r 2 fa0; b0g;
a � a0; b � b0; when t < 0

mr�b� � k _E0 : a � a�t�; k : const:

b � b�t�; when t � 0

9>>>>=>>>>; �17�

Using the differential operation in the reference con®gu-
ration that coincides with the current con®guration at time
t, the Eq. (15) can be expressed as:

orrr

ot
� Krr

omr

or
� Khh

mr

r
� Kzz _ezz with Kij � Lrrij

orrr

or
� rrr ÿ rhh

r
� q

omr

ot

9>>=>>;
�18�

The system (18) possesses two families of characteristics in
the fr; tg plane

dt

dr
� �

���������
qKrr

p
�19�

A negative sign in (19) represents the wave front moving
toward the cylinder center. The positive sign represents
the reverse wave movement, as illustrated in Fig. 2. The
solutions of (18) can be obtained by integration along the
characteristics as described by (19). For application, the
time scale t� in Fig. 2 may be important because it denotes
the instance that the cell is in a fully plastic state. Thus, the
value of �2b0�=t� represents the expansion speed of the
plastic zone in the porous material. In the reference con-
®guration which coincides to the current con®guration at
t � t�, from incompressibility of the material an upper-
bound velocity ®eld is:

mr � b2 _E0

2r
ÿ r _E33

2
; mh � 0

with _E0 � 2 _E11 � _E33

2
; _E11 � _E22 �

_E33

k3

�20�

where k3 is a constant. Substituting (20) into the second
relation of (18) one obtains:

rrr�r� � RI � RII

with RI �
Z r

a

2r
3 _e

_ehh ÿ _err

r

� �
dr; RII � q

Z r

a

omr

ot
dr

�21�

Fig. 1a,b. The analysed cell models. a spherical void model;
b long circular cylindrical cell model

Fig. 2. Illustration of the ``wave front'' in the cell using
characteristic analysis
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where RI is due to the viscoplastic part and RII refers to the
effect of inertia. Using (5) and (20) it is not dif®cult to
derive the explicit expressions of RI and RII . Fig. 3 illus-
trates relationships between the mesoscopic equivalent
strain rate _E and the function gH�b0� which is de®ned by:

gH�b0� �
rrrjr�b0; dynamic

rrrjr�b0; static

�22�

From (20) the mesoscopic stresses can be expressed as
below, using (12) and (13):

R �
���
3
p

2V

Z
v

r _E33W dV; Rm � 2

V
���
3
p
Z

v

rgH
_Eb4

r4
W dV

with W �
_E2b4

r4
� 3

4
_E2
33

� �ÿ1
2

�23�

where r is given by (5) with:

g�T; emp� � r0 1ÿ b�T ÿ T0�� � emp

emp
0

" #N

�24�

where b; N and r0 are material constants; the subscript
``0'' refers to the quantities at a given reference condition
(Needleman and Tvergaard 1991).

The integrals in (23) have been solved numerically by
using the mid-value theorem of integration. Thus the
mesoscopic yield function has the form:

U � R
RYI

� �2

�2q1f �ch ÿ 3q2Rm

2RY2

� �
ÿ 1ÿ q3f �

2 �25�

with

RYi � gig�T; _E� ;

gi � gi�f ; _E; b0;T; e
mp;material constants�; i � 1; 2 ;

The gi are displayed in Fig. 4a as functions of f under
quasi-static loading condition. The numerical results for
the material model described by (5) and (24) show that:

g1 � g1jquasiÿstatic; g2 � g2jquasiÿstaticgH�b0� �26�
where b0 is the outside radius of the cell. The value of 2b0

accounts for the ``average distance between voids'' in an
actual material. RYi refer to, phenomenally, the ``me-
soscopic shear yield strength and volume expansion
strength of the porous material''. Fig. 4b illustrates the
change of the yield surface due to visco-plasticity.

In creep, if the cylindrical cell in the matrix can be
described by (10) with FC2 � 0, a similar expression to (25)
can be obtained (Hao and Brocks 1996).

4
Numerical examples and verification by experimental tests
Algorithms for the material characterized by the GTN
model (25) have been developed and the corresponding
numerical procedure has been implemented into the

Fig. 3. Stress increase due to inertia at the outside surface of
the cell

Fig. 4. a Dependence of g1 and g2 on f, calculated using the cell model; b In¯uence of rate-dependence on yield surface
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``ABAQUS code (1994) as a ``user subroutine''. Single ele-
ment tests of axial symmetric tensile and triaxial loading
have been performed and compared to the analytical so-
lutions that are given in Aravas (1987) and Aravas and
McMeeking (1985) for rate-independent material. One
example is displayed in Fig. 5. Simulation of the dynamic
tensile bar, the cracked four point bend specimen (Brocks
et al. 1996), the 3D Double Edge Cracked Tensile Panel
(DET) and the Middle Cracked Tensile Panel (MT) have
also been performed.

4.1
Round bar under static and dynamic tension
Studies of the necking behaviour of axi-symmetric speci-
mens made of a 22NiMoCr37 ferritic steel under static and
dynamic loading have been performed as veri®cation tests.
The numerical results gave a good prediction of the load
vs. displacement curve and load vs. necking curve when
compared with the static test result and the results are
listed in Hao and Brocks (1996). The dynamic tests were
carried out in the Frauhofer Institute of Materials Research
at room temperature and )60 degrees (C) (Bernauer 1995).
In order to verify the numerical procedure developed in
the present work, the simulation has also been carried out
for a dynamic tensile bar at room temperature. Under

dynamic loading the movement of the stress wave is no
longer symmetrical about the middle section, thus the el-
ement mesh shown in Fig. 6a has been used in the simu-
lation. The whole test process took only 0.00585 seconds
so that an adiabatic process can be assumed in the nu-
merical simulation. Fig. 6b and 6c illustrate the contours of
damage and temperature during necking. Fig. 7 displays a
comparison between the numerical results and the test
results for the load-time curve. It has been found in the
analysis that the compliance of the dynamic test equip-
ment has a signi®cant effect on the amplitude of the stress
wave.

4.2
Four point bending specimen, GGG nodular cast iron
(Brocks et al. 1996)
Simulations of the behaviour of single edge notch four
point bending specimens have been performed using the
described user supplied routine. Tests on specimens made
of two GGG-40 materials with different graphite mor-
phologies have been performed at the IEHK Aachen and

Fig. 5. Results of single element test: axial symmetric tension

Fig. 7. Simulation of the impact tension bar Fig. 8. JR curves of GGG-1AZ1 & -3AZ
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Fig. 6. Illustration of the FE-simulation of the impact tension bar

Fig. 10. Distribution of tensile stress, r33, in the DE(T)
at Daaver � 4:3 mm

Fig. 11. Damage in the ligament (FE simulation) and ductile
crack growth (experiment)

Fig. 9. Simulation of 3D DE(T) specimen
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the TU Mining Academy Freiberg to provide the experi-
mental data. A detailed description of the investigation is
found in Brocks et al. (1996). Figure 8 shows a comparison
of the experimental and numerical JR curves.

4.3
DE(T) specimen, 3D simulation
The ferritic pressure vessel steel 20 Mn Mo Ni 5 5 has been
studied. Its strength and toughness properties have been
characterized by tensile tests on round bars and fracture
mechanic tests on C(T), DE(T) and M(T) specimens (Hee-
rens et al. 1991). As the fracture mechanic specimens were
not side grooved, three dimensional calculations appeared
to be necessary. Due to a threefold symmetry only one
eighth of the DE(T) had to be modelled. Figure 9a shows
that the experimental and numerical load �F� vs elongation
�DL� curves for the DE(T) specimen agree well. The crack
growth resistance which is characterized by CTOD �d5� vs
Da curves are shown in Fig. 9b. Figure 10 displays normal
stress contours in the tensile direction, r33, at the centre
plane of the DE(T) specimen, and shows that the stress
concentration takes place at the actual crack tip. The model
can also realistically simulate the thumb nail shape of the
crack growth. This is shown in Fig. 11 which compares the
damage in the ligament obtained by the FE simulation (left)
with the experimental crack growth front (right).

5
Summary
The upper bound solutions for a cylindrical unit cell with
rate and temperature-dependent matrix materials have
been investigated. The mesoscopic response of the cells
has been used to establish the mesoscopic yield criterion,
which has been expressed in the form introduced by
Gurson, Tvergaard and Needleman. Two additional pa-
rameters appear in the GTN yield criterion, which repre-
sent the in¯uences of strain rate, temperature, the average
distance between voids and material inertia. Numerical
examples and veri®cations of the model have been given.
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