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ABSTRACT

It is no doubt that material’s atomic-electronic structure determines macroscale physical
properties; however, broad varieties in microstructures and heterogeneities from different scales
may significantly amplify or dilute the mechanical behavior of an alloy presented at quantum
scale. Hence, breakthrough of computational alloy’s design lies in the capabilities to
quantitatively and completely integrate key-mechanisms from different scales at each processing
step, so as to obtain a unified procedure to establish quantitative relationships between
composition, process, structure, properties, and performance. For this purpose, a multi-scale
hierarchical model of intergranular fracture has been developed for polycrystalline systems. As an
application example, it has been applied to a carburized steel that is used for gears or other
components in heavy power transmission system. Based on the computations at quantum, micro,
and macro scales, the prediction of fracture toughness has been obtained in accord with
experiments, which reveals that an integranular cracking is mainly triggered by the stress
concentration at the junctions of grain boundaries when the adhesion between adjacent grains is
low. An improved toughness can be achieved by reducing impurities grain boundary segregation
while increasing grains’ ductility.
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1. INTRODUCTION

A practical issue in condense matter physics is to design atomistic structure and enhanced
process treatment, so as to obtain optimized microscale structure with desirable macroscale
properties. Quantum mechanics provides fundamental knowledge of the atomic-electronic
structures of a material, which is the key to understand the corresponding micro and macro
behaviors [1-4, 11, 12, 26]. To investigate properties in general, at sub-atomic scale a transition
metal is usually treated as a bulk phase with periodic atomic array obeying Bloch’s theorem [67].
However, in the perspective of fracture, a metal’s failure is often triggered by lattice’s defects.
The micro-scale random-distributed heterogeneities such as grains, second phase particles,
solution atoms and other point defects, essentially dominate the kinetics of the metal when
environment and applied load change [5-9,19,20,23,24,43,75]. Nevertheless, at macro scale a
structural evolution, for example, a plastic deformation that is an average of the accumulations of
irreversible lattice’s distortions and dislocations, is often modeled again under the approximations
of uniform and continuous through constitutive relationship in the framework of continuum
mechanics. This bottom-up, hierarchical variations in material’s structural modeling reflect the
challenges remaining for alloys’ design, which also reveal the natural complexity of a material.
An effective and quantitative analysis procedure to integrate sub-atomic physics with up-atomic
mechanisms will open new avenue to explore new materials with desirable performance. In this
paper an effort has been made to develop such a procedure to study the failure mechanisms from
different scales which may affect the fracture toughness of carburized steels. The fundamental
theories of solid plasticity and fracture mechanics can be found in [10,13,14,39]. The literatures
regarding computational materials design can be found by, e.g. [4,5,17,20].

Directly quenched after carburizing, carburized steel is used for manufacturing machine
components like gears in heavy power transmission systems [19,21,22]. The part near surface in
this class of steels is termed “case”, which has higher carbon content as compared with the core
part. The case microstructure consists of low temperature tempered martensite and retained
austenite, which is highly susceptible to intergranular fracture that often results in relatively low
fracture toughness. Fig. 1 is a fractography of an AISI 8822 fully carburized specimen with
multiple intergranular cracks. To achieve improved performance, it is vital important to clarify
the mechanisms that induce intergranular cracking and to distinguish the effects of alloy additions
and impurities which cause the transition between intergranular and transgranular failure modes.

Based on the literatures cited in this paper and the authors’ previous works, a multi-scale
model of the intergranular fracture is proposed and an associated computation-based procedure is
developed. This approach focuses on the interaction between grain structure and grain boundary
properties, especially the effects of phosphorous segregation [6]. The developed procedure
hierarchically implements the quantum mechanical computation into a micro-scale
polycrystalline system within plasticity finite elements and cohesive law, which is built into the
computation of a laboratory-sized specimen to obtain fracture toughness. As an example of
application, the AISI 8822 carburized steel case has been analyzed and the obtained results are
compared with experiments.

Reviews and analysis of carburized steels can be found, e.g. in [19, 21-23]. The
interactions between dislocation kinetics and intergranular fracture have been discussed, e.g. by
[23] in the perspective of physical metallurgy. To link grain boundary with chemical composition
and adhesion energies, an impurity segregation model has been developed in [6].
Thermodynamics analysis and more generalized investigations of grain boundaries chemistry can
be found, e.g. in [7, 23, 74]. Based on the “universal feature” [26] of atomic bonding [11, 12,
67], interfacial debonding and cohesive models for solid mechanical computations have been
proposed in [15, 29] with the applications of bulk phase fragmentation [38] and interfacial crack



propagation [36]. A systematical study of the elastoplastic constitutive model for polycrystalline
system has been introduced in [9]. An ab initio computation of grain boundary and comparison
with electron microscopy observation of Cu;Bi grain boundary has been conducted in [74].
Regarding the general issues of grains and grain boundaries, researches and developments have
been reported, e.g. in [18, 34, 35, 55, 66] of crystal plasticity, in [6, 31-33] of impurities grain
boundary segregations, in [43] of grain boundary creep and sliding, in [6, 7, 23, 31] of
intergranular fracture, in [68, 69] of the length scale in plasticity and in [39, 13, 14, 40-42] of
fracture mechanics. Literatures of computation science can be found, e.g. in [44-49, 70, 71, 73] of
the density function theory [2, 3] based quantum mechanics computation and in [50-53] of finite
element analysis.

In recent years great activities can be found regarding multiscale analysis and its
application to materials science, for examples, these in [57-63, 20, 28, 72, 76]. In [63] a scheme
has been proposed to compute the average heat conductivity of a cell containing aggregated
heterogeneous composite inclusions through the cell’s surface heat flow and temperature. This
model has its counter part in solid mechanics analysis, i.e. the cell model originally developed in
[64]. A quasicontinuum method, by which the basic unit is a finite element that contains atoms,
has been developed in [60, 61]; the energy potential of the “embedded atomic method (EAM)”
[48, 49] has been adopted as the strain energy in the finite element. In the “coarse-grain” method
[58] an atomic segregate forms a finite element to represent a thermodynamic system, by which
both mechanical deformation and statistic-based thermo-vibration-induced temperature are taken
into account. A concurrent scheme between different physical domains in continuum theory has
been developed in [62]. A formalism coupling density-function theory-based simulation in one
domain to the continuum mechanics simulation in another domain has been developed in [57]. A
variations-based scheme to compute many-body quantum system has been reported in [76]. A
“Moving Particle Finite Element Method” (MPFEM) has been developed in [20, 25, 27, 30],
which combines the salient features of finite element and particles to represent a solid. In order to
accurately and efficiently represent atomistic behavior at micro scale, a “Particle Dynamics” (PD)
method has been developed in [20, 28]. The MPFEM and PD are the computational methods
applied in this study; detailed description of the ‘“Particle Dynamics™ and application to bcc iron
are given in the sections 2.5-2.7 of [20]. The original concept for this class of methodologies can
be found in the Lorentz’s original work that establishes the connection between mean field
electrostatic theory and microscopic theory, as described by the chapter 27 of [67].
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Fig. 1 An experimental observation of intergranular fracture



2. MODEL AND PROCEDURE DEVELOPED
2.1 An Integranular Fracture Model

For an engineering material such as the case of a gear under cycling contacts, its
hardness, strength and fracture toughness are the key-properties that determine performance.
High case strength and hardness are usually produced by quench and tempering, whereby the
tempered martensite is the major constituent that provides surface hardness with enhanced wear
resistance. Fracture toughness, which also contributes to fatigue life, represents the resistances
against micro-crack initiation and growth. Obviously, grain boundary properties have profound
effects on the initial stage of intergranular separations — the phenomenon presented in Fig. 1.
Considering a carburized steel case as a system, the strength and fracture toughness of this system
are determined by the combinations of chemical composition, phase constituents, and the
structural parameters associated with the micro- and nano-scale heterogeneities, such as
precipitates, solute atoms and second phase particles in grains, lattice misorientation and
impurities segregation at grain boundaries, grain size and morphology, and dislocations density.
From the viewpoints of strength and fracture toughness, these parameters can be distinguished
into two classes: the heterogeneities inside a grain which determine the mechanical properties of
the grain; and the complexities around grain boundaries which determine the interaction between
adjacent grains; by the latter grain boundary adhesion is the dominant factor among others.

Hence, an intergranular fracture model, illustrated in Fig. 2, has been developed, by
which a macroscale crack propagation is an accumulation of the damage evolution within the
small process zone in close vicinity around the crack tip. For an intergranular fracture in
carburized steels, evolution of damage is an accumulation of the decohesion of grain boundaries
since those martensite-dominant grains are mechanically stronger. This decohesion is governed
by the traction-separation law between two adjacent grains, as plotted at the upper right corner of
the figure, which essentially is a process to break the bonds between atoms pairs separated by a
grain boundary. Therefore, this model schematically establishes the correlations among
macroscale crack growth, microscopic damage evolution and atomistic debonding. Fracture
toughness is material’s resistance against crack growth. Accurate computations of grain boundary
adhesion and grain’s mechanical properties are the necessary pre-conditions for obtaining a
prediction of fracture toughness. The associated idea for computational carburized steel’s design
is conceptualized by the flow chart in Fig. 3.
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Fig. 2 A proposed multi-scale intergrannual fracture model
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Fig. 3 The fundamental idea behind the proposed model in Fig. 2

2.2 Experiments

The uniaxial tension test and the compact tension test of fracture toughness for the AISI
8822 carburized steel have been conducted by Dana Corporation, following the ASTM Standard
E8 and E399, respectively. The specimens have been fully carburized up to 0.91 pct carbon
through entire thickness, representing the case part of a gear made of the steel. The tensile tests
and fracture toughness tests were performed in normal laboratory environment at ambient
temperature with no humidity control. Fracture toughness tests were conducted with the ASTM



Standard Compact Tension specimens (CT) of thickness B: 5.08 mm, length W: 50.8 mm, and
height: 60.96 mm. The microscopic observation indicates that the tempered martensite is the
dominant constituent (>80%). The grain size is in the range of the ASTM E-112 size 9 with the
average diameter of 16 microns. The measured mechanical properties and the chemical
composition are listed in Tables I and II.

Table I: Chemical Composition (wt %)

C Mn Ni Cr Mo Cu S P Si Fe

0.91 1.01 0.51 0.57 0.30 0.15 0.0024 | 0.009 | 0.35 balance
Table II: Mechanical Properties

Young’s Yielding Ultimate Engineering Section

module (GPa) Strength (MPa) | Strength (MPa) | fracture strain | reduction (%)
(%)
220 978 1369 13 2
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Fig. 4 An alternative expression of the multi-scale, multi-physic model of
the intergranular fracture introduced by Fig. 2

2.3 A Bottom-Up Analysis Procedure

Fig. 4 details the procedure introduced by the model of Fig. 2. Starting at its right upper
corner, a finite element model of the ASTM Standard CT specimen is plotted which is used to
measure the conventional macroscale fracture parameters, such as CTOD (crack tip opening
displacement), CMOD(crack mouth opening displacement), Stress Intensity Factor and J-integral.
These parameters correlated to each other, defining a fracture toughness of the steel [39]. For



carburized steels, the evolution of the crack tip damage zone is mainly dominated by the
decohesion of grain boundary, as illustrated by Fig. 2. A numerical procedure, which is termed
“Moving Particle Finite Element’(MPFEM) [25, 27, 30], is employed to integrate the
deformation of grains and separation of grain boundaries through the computation over the
damage zone, as illustrated in the box left from the CT specimen. An intergranular decohesion
can be mathematically described by the traction-separation relations between grain boundaries,
which is similar to adhesion in bulk phase but with deducted adhesion energy due to localized
concentration of heterogeneities and tilted angle between two grains. This traction-separation
relation can be obtained through the sub-atomic quantum mechanical computations applying, e.g.
the primitive cell plotted at the left lower corner of the figure 4.

The flow chart in Fig. 5 outlines the procedure; the details for each step will be explained
in the following sections.

input: phase constituent 1n gram
computation of the adhesion of bulk iron € o e 3, 8 )

A 4

input: composition of additions
computation of the deduction (increase) of adhesion due to

segregation: interstitial elements -F, C, I

l

set-up of traction-separation law
{cohesive law) at grain boundary

input: applied load

uniaxial stress-strain curve
macro scale computation of
l CT specimen

input: grain size grade
set-up of the MEFEM polycrystalline
nets for crack tip damage zone model

l .

cormputation of the eraclk tip damage zone model outer boundary condition

output: fracture toughness

Fig. 5 An outline of the bottom-up analysis procedure for the intergranular fracture model
introduced by Figs 2 and 4; where &, &', ¥, and

[ refer to ferrite, martensite, austenite, and bainite phase, respectively.

2.4 Sub-Atomic Computation
2.4.1 Interfacial adhesion and interatomic potential

Considering fracture as a motion to split an atomic array, the interfacial adhesion between
the two separated surfaces governs this process. On other hand, it is a process to break bonded
atoms pairs from adjacent grains. Obviously, the interfacial adhesion and interatomic potential are
not identical. The relationship between them is crucial for establishing a hierarchical linkage in
this multi-scale analysis, which has been derived as follows:



Fig. 6 shows two chunks of atoms arrays, Q, and €., apart from each other with a

B>
distance 4, . T(lN ), the attractive (or repulsive) force per unit area between the two paralleled
surfaces S, and S, can be expressed as the derivative of an interfacial cohesive potential

E“" (A, )[26]:

aEmh (l )
T(Ay)=—22 (1)
v A,

On other hand, let f (r) be the interatomic force between two individual atoms A and B in € ,

and Q,, respectively, with a distance r; and E (r) be the corresponding interatomic potential:

fr)= 2)

Assuming both ©, and Q,to be semi-infinite, the total force acting upon the single atom B

from all atoms in € , is:

2z V4 o0
fs(A)=n, IcosH-f(r)dQA :nA_[rd(p_[ZrcostH _[ aE—(r)afr 3)
Q, 0 0 v or

cos@

where n, is the number of atoms per unit volume of €2 ,. So the total traction/impulsion between

the two bodies, represented by the adhesion T(ﬂN ) between the surface pair S, and.S,, yields

IE*" (Ay)

5, =T(4)=n, [ dS|f,(A)da o)

unit area Ay

where n, is the number of atoms per unit volume in€2, and dS is an infinitesimal area element
of S,.



Fig. 7 The difference between interfacial adhesion and interatomic traction/repulsion: the normal
traction/separation law between surfaces S, of Q, and S, of ., is a function of the
separation A, ; whereas the cohesion between atoms A and B is determined by the interatomic
distance r when omitting the effects of spin-polarization.

The equations (3) and (4) establish the analytical relationship between interatomic
cohesion and interfacial adhesion. For example, quantum mechanics computation usually gives

the interfacial adhesion potential E”" [26, 46]. When E”" is written as a polynomial as
following:

a2 a8 an
+ + e #2.8 5
Gl G () " )

where a,, i =2,8,..., are constant. By substituting (5) into (4) and (3) one finds that the

E“" (ﬂ’N ) =

corresponding interatomic potential yields:
o 12 o 6
E(r)=4go{[—] —(—j } (6)
r r

and a =0 @)

if

Eq. (6) is the conventional Leonard-Jones Potential for a biatom system; where o is the
“collision diameter” that equals the separation when E is zero; ¢, is related to the “well depth”,



i.e. the minimum of E in the energy-separation ( E,r ) curve, representing the equilibrium
position:

f(r)= =0 and ry = 820

It should be noticed that the bi-atomic potential (6) is under the approximation to omit the effects
of hyperfine structure of atoms.

Similarly to (1), the stress against sliding between two atomic surfaces, denoted as 07 , is
determined by the derivative of Peierls-Nabarro energy potential again stacking fault E¢ [15, 20,
54]:

and  Eg = ¥y sin{%} @®)

JE,
o, = ol

where A, is the relative sliding; ¥, is the Peierls-Nabarro energy barrier against dislocation.

2.4.2 Geometrical discontinuities and grain boundary

In Fig. 6 the two adjacent surfaces S, and S are parallel to each other but no discussion

about the details, for example, lattice’s orientations of €, and £, . Grain boundary can be

considered as accumulated discontinuities in a periodic atomic array, as categorized in Fig. 7. The
discontinuities, in conjunction with impurities segregations, may reduce the grain boundary
adhesion energies profoundly. To explain this concept, only the tilted grain boundary in
polycrystalline bec iron system, i.e. the case (a) of Fig. 7, will be discussed in this paper, focusing
on the effects of phosphorous segregation on fracture toughness. Obviously, the grain boundary

adhesion energy, denoted as E ;Zh , is different from the E“”, the adhesion energy in bulk phase:
E;zh — Ecoh _ AEtilt _ AEsegragate (9)

where AE™ and AE’¥““ are the deductions due to tilt and impurities segregation,
respectively. The similar expression also applies to the ¥, in (8), denoted as 75; .

eeeee
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(@) ¥ gb, tilt angle = & (b) misorientation
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Fig. 7 Geometrical heterogeneities caused by grain boundary

2.4.3 Impurities segregation
When chemical composition of steel is known, an issue is to find how many the hazard
elements, such as phosphorous and sulfur, segregated around grain boundaries. Let the symbol

I, PG to represent the average weight percentage of phosphorous (P) segregated at grain
boundaries, the Langmuir-McLean model [17] gives an estimate:

ALY = ! (10)

AG’
1+ xexp| ——
RT

where Ay is the increment of 7, during a heat treatment at a thermodynamic equilibrium

state with the temperature 7, AG’ is the chemical potential of the corresponding bulk phase
which is about -78 kJ/mol™ (at 300K) [6], R is the universal gas constant and x is to be calibrated
by test.

The equation (10) indicates phosphorous segregation can be controlled through adjusting
heat treatment temperature, which also provides a way to estimate /) PG according to heat
treatment history. The experimental results of DANA Corp. have been used to calibrate the
constant x. The total 7, for the steel analyzed is below 10%.

2.4.4 DFT [2, 3] Computation

S

In order to obtain E;Zh and }/gb for establishing grain boundary traction-separation law,

the Density Function Theory[2,3] based quantum mechanics computations have been conducted,
applying the full potential all electrons linear augmented plane wave (FLAPW) numerical codes
[4, 44-46,71]. The procedure to set up periodic atomic supercells for this class of computations
has been introduced in [70].

The atomic cells with two tilted angles 8 : X1 (920”) and X5 (9:51.13”) have been
computed at ground state. The X1 grain boundary is the case that two adjacent grains have the
same lattice’s orientation but with phosphorous segregation in-between, which is a degenerated
case of low-angle grain boundaries. The primitive cell of ¥£5 grain boundary is given by the plot
on the left hand side of Fig. 8, which is a typical high angle grain boundary. The corresponding
distributions of electron charge density for the boundary cell and X5 surface, respectively, are
plotted on the right hand side of the figure. Applying the procedure introduced in [26, 32, 20], the
differences between the cases with and without phosphorous segregation define the AE **"*"
whereas the difference between non-segregation 1 and £5 cells defines the AE™ in (9). Grain
boundaries with other tilted angles (less than @ = 51.13”) are interpolated between zero and the

AE"™ of £5. The twin boundary is not taken into account for the intergranular fracture studied.

The computed adhesion energies for bulk bee iron and for the X1 grain boundary with
phosphorous segregation are plotted in Fig. 9a, by which the discretized numerical data were



fitted into polynomials (5-7). As expected, a remarkable drop in adhesion energy can be seen
when P segregate presents. For the £5 boundary AE™ | the reduction of adhesion energy, is
about 18% whenT'S =0. Considering grain boundary represents a “discontinuity” of periodic

array of atoms, the reasons that cause the drop of adhesion energy can be: (i) the segregated
interstitial phosphorous atoms weaken metallic Fe-Fe bonds; (ii) the tilted boundary is actually an
array of empty sites that enlarges the interatomic distance between the atoms from adjacent
grains; (iii) segregated P atoms or titled boundary breaks the periodicity in bulk phase, which
destroys the ferromagnetic alignment of bcc iron and, thus, induces localized antiferromagnetic-
like spin-polarization ( see Fig. 9b ); it is well-known that the iron fcc crystal is
antiferromagnetic, which is with less stability as compared with bcc iron at ground state, see

Appendix I. Table III lists the computed values of E”", AE"™ and AE**“¢“* . Results of other
segregations or grain boundary tilt angles can be found, e.g. in [6, 10, 11, 31, 32]. According to

the computation in [20]: ¥, = 0.43 (J/M?). At grain boundary the relation ¥y = ¥, (E ;Zh / E gb)

is applied in this analysis.

electrons

au®

3.00
2.50
1.80
1.20
0.60
0.00

(a) (b) (c)

Fig. 8 The supercell of X5 bcc iron grain boundary with phosphorous segregate (a) and charge
density in the middle layer of the cell (b, ¢); where the red ball in (a) and the small dark-gray ball
in (b) and (c) are Phosphorous atoms whereas the others are iron atoms; a bec cell is illustrated in

the supercell of (a). The misorientation defined by Fig. 7 is zero in these computations.
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Fig. 9. Computation of the grain boundary adhesion with phosphorous segregation

Table III Grain boundary adhesion energy for BCC iron (J/M?)

Ecoh AE tilt ( Zl ) AEtilt ( z 5 ) AExegragate ( Zl ) AExegragate ( Zl )
I¢=0 I¢=0 IS =4.6% IS =9.4%
4.97 0 1.67 0.94 1.61

where P: phosphorous; Ff,; : weight percentage of P segregation

2.5 A Hierarchical Multi-Scale Procedure

A major challenge for the object studied is to bridge the sub-atomic computation with
micro and macro analysis, which requires to hierarchically integrate the kinetics from angstroms
to centimeters while highlighting the dominant mechanisms. This is somewhat different from
many recently developed successful methods, for examples, [57-63]. In order to predict the steel’s
fracture toughness, the following two steps are vital important: (I) implement the results of
quantum mechanical computation obtained into the polycrystalline system; (II) to embed the
information of grain-sized analysis into the inch-sized fracture toughness specimen.

2.5.1 Sub-Atomic to Up-atomic

The step (I) requires bridging the sub-atomic quantum physics with up-atomic continuum
analysis. As plotted in the flow chart of Fig. 5, the Moving Particle Finite Element Method
(MPFEM) is employed for this purpose. It contains the methodologies in two perspectives: finite
element and particle method. For sub-atomic to up-atomic bridging, the ‘Particle Dynamics’,
introduced in [20, 28], is applied. The idea of this approach is to represent an atomic system as a
particle system through lumping several atoms into a super-atom, termed “particle”, while



preserving the essential properties of the atomic system via a proposed “equivalent stiffness rule”.
This rule requires that the particle system has the same periodic structure and stiffness as the
atomic system but with less number of particles and a larger inter-particle spacing that is
determined according to the scale of interest, see Figs. 10a,b. The sub-atomic physics, which may
dominate the mechanical behavior at up-atomic scales, is preserved through transforming the
inter-atomic potential into an inter-particle potential by the following way:

Assuming E“" to be the interatomic potential, like (6), for the system in Fig. 10a; when
it endures a deformation, for example, a, becomes a, ; accordingly R — R, = Na, in the

particle system of Fig. 10b. This deformation can be represented by a continuous strain field &

atom

for both systems. The corresponding stress tensor 0" and stiffness tensor Cj;;" of the atomic

i
system yield [26, 56]:

aEalom aEazom
-2 ik
g, 0E,;

atom __
i =

(11a)

and

atom

C%om — aO-l] (11b)
ijkl
’ de,

where p is density and the dummy summation rule is applied. The second term on the right hand
side of (11a) is corresponding to finite strain [56], which can be omitted when deformation is
small.

Similarly, for the particle system in Fig. 10b with an inter-particle potential £

Particle *

oE oE

G;article — aParticle ] - aParticle (123.)
& i & i
and
' a O_{’article
Cf[;;rncle — ij ( 12b)
i
o€,

The “equivalent stiffness rule” requires:

Particle atom
Ci " = Cig (13)
which leads to

Particle __ __atom
o = o (14)



The equality (13) provides a group of conditions to determine E that gives the same

Particle
stresses for both systems, as confirmed by (14). However, the computational effort by Particle
Dynamics is reduced to about 1/N™ of that by atomic system for a m-dimensional case; where N
defines the size of the particle, see Fig. 10b, and m=1,2,3. An analysis of the bcc iron lattice with
grain boundary is given in [20, 28].

atoms particles

9] O (@] @ [2] (@] [9] [2] (@ [@
@] o ©O © ] (@] o @ @ Q
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b R = Na,
(a) atomis system (b) particle system

Fig. 10 The “Particle Dynamics” method [20] that transfers the atomic system (a) into the particle
system (b) through segregating the atoms within the cell of dimension R into a particle whereas
an “equal stiffness rule” is imposed to ensure the two systems having the same elastic properties.

According to the procedure introduced above, one can find that, as compared with other
successful multiscale methods, e.g. the Quasicontinuum [60, 61], the novelty of the Particle
Dynamics lies in the following two perspectives:

- The Particle Dynamics (PD) is a ‘“hierarchically-structured” method to transfer an
atomic system into a particle network that keeps the same lattice structure as the original;
by contrast, in the methods of [58, 60, 61] a finite element contains a set of atoms and the
finite element net work may have kinematically favorited slip system that differs from the
particle network.

- The “equivalent stiffness rule” of Particle Dynamics provides a unique way to
reproduce an inter-atomic interactions through an inter-particle interaction with the same
“constitutive” representation.

Applying this approach, the quantum mechanical computation-based interfacial
adhesions are applied to describe the grain boundary traction-separation relation for the
polycrystalline system that plotted in the second column from right in Fig. 4, where each grain is
a crystal made of “particles” which are segregations of atoms. The traction-separation relation has



been implemented into a group of “cohesive elements” that connect each grain boundary surfaces
pair, e.g. the AB in Fig. 11a. On other hand, all grains are treated as bcc crystals with the same
[001] direction perpendicular to the two-dimensional plane but with randomly pre-assigned in-
plane orientations. Each particle in a grain defines a “node”, the connections among these nodes
form small finite elements that partition the grain. The finite element is with the average size
about one order smaller than average grain size, as illustrated in the middle box of the second
column from right in Fig. 4. The finite elements obey the constitutive relation of crystal plasticity
with Taylor’s hardening (isotropic hardening) [18]; which is governed by the effective stress-
strain relation that is calibrated according to the quantum mechanics analysis of bulk iron phase
through the “Particle Dynamics” method, as described in [28]. The Moving Particle Finite
Element method [25, 27, 30], which integrates all atomic segregates into a polycrystalline
network that combines the “cohesive elements” and grain finite elements, has been applied for the
micro-scale computation.

grain 2

(a) grain boundary (b) triple junction

Fig. 11 MPFEM cohesive elements for the computations of grain boundary separation and
sliding; (a) the cohesive element AB connects two adjacent grains through the nodes A and B;
where S, is a “master surface” enhanced to the node A in numerical contact analysis, defining the

normal separation A, and relative sliding A, respectively; thus, the grain boundary surface

associated with the node B is defined as “slaver surface”; (b) at triple junction the three cohesive
elements, i.e. AB, AA’, A’B, and corresponding master-slaver surfaces pair, are required in
analysis. Moving Finite Element Method [25, 27, 30] is applied to integrate cohesive elements
and grains.

2.5.2 Micro to Macro Scale

As mentioned in the previous subsection, the size of finite element inside a grain is in the
order of micron; for a grain by grain micro-structured two-dimensional computation of an ASTM
standard CT specimen, a model with about 6.25x10"" finite elements (10" elements for 3D) is
required. Obviously, more effective scheme will be preferred since the damage caused by
intergranular cracking is limited within the close vicinity of the crack tip; the rest part of the
specimen can be described by well-developed theory of isotropic and uniform plasticity; for the
latter, finite element with the size of millimeter is sufficient.



In this analysis a scheme is developed by which the CT specimen is divided into two
parts: a small chunk of material surround the crack tip which is modeled by the polycrystalline

microstructure; an example of this crack tip zone, denoted as €, is plotted on the right upper
corner of Fig. 12. The rest part of the specimen, denoted as £, is modeled by the continuum J,
flow plasticity theory using regular finite element. The external load applied to the specimen is
transferred into the crack tip through the continuity conditions of traction T and displacement ,
on the shared boundary X . The detail of the three-dimensional meshes around X in Q is given
by Fig. 12, which shows the adoption from the relatively small finite elements near X to the
coarse elements far away. T and %, at X on the middle section of the 3D block define the plane

strain boundary condition on the X of € . This is similar to the “boundary layer method”, e.g.,

in [37], by which the stresses of asymptotic analytical solution, such as mode-I K-field [39], is
applied to the outer boundary of the crack tip zone.

T

.5:

¥!
—

F 380 i 5 §
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Fig. 12 The developed scheme divides a standard specimen into two parts: the polycrystalline

slab Q, containing, for example, a sharp crack tip, as plotted on the right upper corner; which

“shakes” hands to the rest of the specimen through the continuities of displacement and J-integral
on the boundary X

However, when massive microscale intergranular cracks occur within Qt , the stresses on
Y may decrease due to material’s softening while #, keeps climbing up. In other word, the
traction 7' alone does not uniquely determine the deformation field inside Q,. By contrast, the

u, on X can be monotonic when an external load in the form of displacement increases

monotonically. Generally it is very difficult to satisfy the both stress and displacement
continuities simultaneously by boundary layer method. Hence, instead, a J-integral[13] based
“shake hand” scheme is developed which requires the satisfaction of the continuous conditions of
displacement and J-integral on X ; the latter represents the energy that flows into the crack tip.



This “shake hand” scheme includes three computations: beside the computation of the
part © and that of the polycrystalline system €, with intergranular cracking, respectively; the

third computation of the entire specimen (€, +€) is conducted by which no intergranular
cracking in ., so all material are obeying the simple J, plasticity law. The quantities associated
with these three computations are distinguished in turn by the superscriptions Q, Q , and
Q. + Q. Then, for the two cases without intergranular cracking, the corresponding J-integral,
applied load P, and CMOD (crack mouth opening displacement) U are J©,P®,U® and
J 4 pe et respectively. The reason for the computation (Q, +Q) is to find the

external load (Pdg’ ) and CMOD (U%* ) corresponding to the computation of £, with

lamage damage

intergranular cracking induced damage.

The displacement on X obtained from the third computation, denoted as 17,9’+Q , 1s used
as the boundary condition imposed on X for the computation of the polycrystalline system €,
with intergranular cracking, which leads to the corresponding J-integrals J % on X. On other
hand, u.;,, , a reference crack tip opening displacements (CTOD), is recorded for all three

computations; which is defined as an integral over X for the vertical component of u, with
respect to dx and then divided by the length of the projection of ¥ on the horizontal coordinate
x,. For a given Uy : P S PO Ut =U® and JH? S T% > J9 . So P the

damage *
corresponding external load for the computation of £, with intergranular cracking, is obtained
through the following interpolation:

JE—J°

Qf
P Jore _ 0

damage

= P2 + (P - p?) (15)

which is the load actually applied to the specimen. This procedure is under the approximation that
the displacement field in €2 changes monotonically when the CT specimen is under a monotonic
load-line displacement. This is a reasonable approximation for small-scale yielding.

3. RESULTS AND DISSCUSION

Fig. 13 is a set of snap-shots of the evolutions of stress field in the damage zone €,

surrounding a blunted crack tip of the CT specimen, when applied load increases. Fig. 14 gives
the comparison between the simulated load-CMOD relation and experimental results. Fig. 15
shows the computed fracture toughness according to ASTM E399 when the content of
phosphorous varies. As expected, higher content of phosphorous leads to lower fracture
toughness.
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Fig. 13 Intergranular fracture — MPFEM microscale simulation for the case with blunted crack tip
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Fig. 14 The computed Load-CMOD curves for the specimens with different weight percentages
of phosphorous
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Fig. 15 The relationship between fracture toughness and the content of phosphorous,
computational results, by improving grain ductility, the curve may move up, as indicated by the
arrow A.

It is well-known that phosphorous segregates will embrittle metals [6]. However, by
comparing the drop in fracture toughness plotted in Fig. 15 and the deduction of adhesion energy
plotted in Fig. 9a when phosphorous segregates at grain boundary, the changes in the former is
much more significant than that in the latter. This can be explained by the simulations in Fig. 13,
which shows a severe stress concentration at triple-junctions and the junctions of multi-grain
boundaries when the average amplitude of the stress field is moderate. Thus, each junction
becomes a source of microscale-cracking, which causes decohesion along grain boundaries. The
accumulation of these microscale-cracks forms a damage zone ahead a macro-scaled crack tip.
The evolution of this damage zone leads to the subsequent macroscale crack growth. Considering
a steel be a system, an intergranular fracture essentially is the result of the interaction between
grain boundary separation and deformation of grains. Therefore, removing the stress
concentration at junctions of grain boundaries and increasing grain boundary adhesion are the two
equally important goals for improving the mechanical properties of the steel. The study conducted
inspires the ideas to achieve the first goal by increasing grain ductility through alloy additions,
e.g. Ni, and phase constituents, e.g. with optimized ratio of bainite and retard austenite; while to
improve grain boundary properties through the following three ways: (i) adding grain boundary
clue elements such as B and Nb; which also have the function to pin grain boundary so reduce
grain’s size; (ii) alloying with appropriated processing to promote the formations of (M, P),C,
and (M, S),C, compounds which extract P and S out from grain boundaries; (iii) adjusting heat
treatment process to reduce P grain boundary concentration, as described (10).

4. Conclusions and Suggestions

From the respect of mechanical analysis, this paper reports an effect to understand the
intergranular fracture phenomenon in polycrystalline system based on the underlying fundamental
physics. For this purpose a multi-scale procedure has been developed, which hierarchicaly
integrate the density function theory computations of ¥£5 and X1 boundary within Phosphorous
segregation into a molecule-like “particle dynamics” analysis of polycrystalline system; the



obtained model is built into a corresponding macro-scale particle-finite element analysis of
laboratory-size fracture toughness specimen. A theoretical relation between the interatomic
potential in a bi-atomic system and the interfacial adhesion in an atomic slab has been obtained;
the difference between them is often being omitted in many analyses. The developed “particle
dynamics” is able to efficiently reproduce the quantum physics-based lattice’s mechanical
behavior by a particle system of grains and grains boundaries at the scale of microns.

The developed procedure has been applied to the gear’s case made of AISI 8822
carburized steel, which concludes that for the polycrystalline system consisting of the grains with
high strength and hardness, an intergranular fracture is governed by the interaction of grain
boundary adhesion and stress concentration at triple and other multiple grain boundaries’
junctions. Hence, optimized mechanical properties for this class of steels can be achieved through
the following conventional ways:

- Refine grain size: although finer grains may be detrimental to toughness, however,
when the average size is not less than 10> nm, smaller grains may reduce the local
resistance against dislocations motion around junctions of grain boundaries while
increase the energy barriers against large scale yielding due to increased zigzags in
slipping paths; the former may smear out the stress concentration at the junctions and the
latter elevates the average strength according to conventional Hall-Petch relation. Also,
finer grains enlarge the total area of grain boundaries which reduces average impurities
segregation per unit area of grain boundary. Hence, the trade-off of these factors may
finally lead to a positive effect to the system.

- Alloying and processing to simultaneously improve grain boundary adhesion and
grain’s ductility: high grain’s ductility reduces the stress concentration at triple-junctions;
a superposition of these two mechanisms may result in the transition from intergranular
fracture to trangranular fracture.

- Adjusting heat treatment to reduce impurities grain boundary segregation, improve
phase constituent distribution and grain size.

Appendix
In the following text boldface symbol denote tensor, the order of which is indicated by
the context. Plain symbols denote scalars or a component of a tensor when a subscript is

attached. Repeated indices are summed. For two order tensors a and b, a = laij J, b= lbij J; then
a’ = [aji], a-b= laikbij’ a:b= laijbijl’ and ab = laijbli-

I Feromagnetic and Antiferromagnetic phases of Iron [65]
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Fig. Al: (a) Comparison of the ground state ferromagnetic and antiferromagnetic
system energies of unit atomic cell when it transforms from bcc to fcc crystal along “Bain
path”; where 7 is the order parameter to characterize the lattice constant (7 =0: fcc,
n =1:bcc); so the fce crystal has antiferromagnetic structure with higher ground state

energy than bcc. (b) The magnetization moment per atom when the lattice structure varies
along Bain path.
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Fig. A2: Spin-charge density distributions for bulk fcc (left) and bce (right).

II: About the “Moving Particle Finite Element Method” (MPFEM) [25, 27, 30]
The network that connects all particles obtained from “Particle Dynamics”[20] forms a
finite element mesh, which is the same as the mesh that represents a discretized body in solid



mechanics finite element analysis [50-53]. Fig. A3(a) shows an example of such a solid body Q
with the boundary segment 0Q, under applied force (natural boundary condition) and the

segment dQ), with given displacement (essential boundary condition). Q is partitioned into 9

triangle elements in (b). Each corner of a triangle element is a particle that is termed “node” in
finite element analysis. In the i element, the strain incremental tensor inside a finite element,

denoted as Ag, is expressed as the function of the displacement increments vector Au, at all
nodes associated with this element:

Ae =B, - Au, (bl)

where the rule of dummy summation for the repeated index i applies; B, is the “differential

matrix”, determined by displacement-strain relation (e.g. Cauchy geometric relation) and the
interpolation scheme (shape function) of the finite element.

= VVA

(a) (b)
Fig. A3: The conception of MPFEM applied to grain boundary with cohesive element xx’;

o0,

Assuming that the elements E|, E,, E, belong to one grain while E,, E,, E, belong to

another grain, then the node between two grains actually is a “cohesive element” that connects the
particles from two adjacent grains’ surfaces; for example, the x and x' in Fig. A3(c). The
“Moving Particle Finite Element Method” [25, 27, 30] is able to solve the equilibrium condition
at nodes through the virtual work principle.

Considering the node x in the case of Fig. A3(b), the virtual work principle-based
equilibrium condition at this node implies that the work done by a force AF _imposed on the

nodal x , which is the product of AF and a virtual nodal displacement Au _ at this node, equals

the summation of the strain energies caused by Au . in all elements shared the node x:

6 6
AF -Auy = (Ao : AelV; =Y (A : B; - Au; Y (b2)
i=1 i=1



th

where V; is the volume of the i" element; Au; = [Aux,O]T is a vector that contains the

displacement increments at all nodes associated with the elements adjacent to the node x; but by
the virtual work principle it is assumed all these nodal displacements are zero except Au _; Ao'is

the stress increment tensor that is correlated to Ag through the constitutive law:
Ac=C,: A¢ (b3)
where C, is the tangential stiffness matrix of the bulk phase, which is a fourth order tensor.

In MPFEM there is no restriction to the type of the elements in the nodal equilibrium
condition (b2). For the case in Fig. A3(c) the node x is at a grain boundary formed by the upper
edges of the triangle elements E; and E; The developed cohesive element xx’ establishes the
connection between the two sides of the opposite grains. Similar to (b2), the equilibrium
condition at the node x can be expressed as the following summation.

3
AF -Au, =Y (Ac: B, Au,V + AF “" - Au®" (b4)

i=1

where AF ““" and Au" are the force and elongation vector of the cohesive element; when
there is no displacement on the other end of the cohesive element:

Au™" = Au_=[1,, A1 . (b5)
where A, and A are the normal and tangential separation in (1) and (8), respectively.

When all other nodes are fix but node x has the displacement Au _, one can remove Au
from the both sides of (b4), which becomes the equilibrium condition at this node in matrix form:

AF =K -Au, (b6)

where K = K ¢ Y K jocon » the grain matrix tangential stiffness K, and decohesion stiffness

K j..on are defined as below:

B":c,:B)v (b7)

1

K =

3
t

1

and

_AEE)

= b8
decoh a(lN , ﬂs ) ( )
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