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ABSTRACT

Breakthrough of computational alloy’s design lies in the capabilities to quantitatively and
completely integrate key-mechanisms in each processing step into a unified procedure that is able
to establish the quantitative relationship between chemical composition, nano/microstructures,
properties and performance. For this purpose, a multi-scale model of intergranular fracture has
been developed to analysis the directly quenched after carburizing, carburized steels. This class of
steels is highly susceptible to intergranular fracture which often results in relatively low fracture
toughness. To achieve improved performance, the crucial issues are to clarify the dominant
mechanisms that cause fracture and to distinguish the effects of alloy additions and impurities on
the transition between intergranular and transgranular failure modes. Based on the computations
at micro and quantum scales, the developed procedure has been applied for the AISI 8822 with
carburized case steel, providing the prediction of fracture toughness that is compared with
experiments. This analysis reveals that an integranular cracking is mainly triggered by the triple-
junction stress concentration when grain boundary adhesion is low. An improved toughness can
be achieved by reducing impurities grain boundary segregation while increasing grains’ ductility.
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1. INTRODUCTION

Although rapidly development of computational engineering science continuously
provides new means and tools to investigate deformation, fracture and failure phenomena of
alloys, challenge remains in obtaining quantitative relationships between chemical composition
and alloy compounds, micro and nano structures, micro and macro properties, laboratory
characterization and engineering performance through hierarchically integrating key-mechanisms
at each process step while highlighting dominant mechanisms, so as to enable a thoroughgoing
computational material’s design.

Quantum mechanics provides fundamental knowledge of the atomic-electronic structures
of a material, which determines corresponding micro and macro properties[1-4,11,12,26]. To
investigate material’s properties in general, at sub-atomic scale a metal is usually treated as a bulk
phase formed by periodic atomic array that obeys Bloch’s theorem [67]. However, a metal’s
failure is often triggered by structural discontinuities in lattice; for example, dislocations. At
microscale the random-distributed heterogeneities such as grains, second phase particles, and
solution atoms, essentially dominate the kinetics of an alloy when environment changes[5-
9,19,20,23,24,43]. Nevertheless, at macro-scale a structural evolution, for example, a plastic
deformation that is an average of lattice’s distortion and dislocation, is often modeled again under
the approximations of uniform and continuous through constitutive relationship like stress-strain
law in the framework of continuum mechanics [10,13-18,43]. This bottom-up, hierarchical
variations in material’s structural modeling reflect the challenges remaining for alloys’ design,
which also reveal the natural complexity of a material. An effective and quantitative analysis
procedure to integrate sub-atomic physics with up-atomic mechanisms will bring significant
benefit for exploring new materials with lower cost and better performance. An effort has been
made in this paper is to develop such a procedure to study the failure mechanisms at different
scales that may affect the fracture toughness of carburized steels case.

Directly quenched after carburizing, carburized steels, are traditional materials for
machine components like gears in heavy energy transmission systems [19,21,22]. The case
microstructure of this class of steels consists of low temperature tempered martensite and retained
austenite, which is highly susceptible to intergranular fracture that often results in relatively low
fracture toughness. Fig. 1 is a fractography of an AISI 8822 fully carburized specimen with
multiple intergranular cracks. To achieve improved performance, it is vital important to clarify
the mechanisms that cause intergranular cracking and to distinguish the effects of alloy additions
and impurities on the transition between intergranular and transgranular failure modes, so as to
find optimized chemical composition and heat treatment process for desirable properties.

Based on the literatures cited in this paper and the authors’ previous works [20, 25], a
multi-scale analysis model of the intergranular fracture in carburized steels case is proposed and
an associated computation-based procedure is developed. This approach focuses on grain and
grain boundary properties, especially phosphorous segregation, and their effects on the steel’s
fracture toughness. This procedure hierarchically implements the quantum mechanical
computation into a microscale polycrystalline system with plasticity finite elements and cohesive
law, which is embedded into the computation of a laboratory-sized specimen to predict fracture
toughness. As an example of application, the analysis of AISI 8822 carburized case steel is
performed and the obtained results are compared with experiments. The main object of this paper
is to introduce the concept, methodology, and main scheme of the developed procedure. The
detailed algorithms at each scale are either described in the cited literatures or just briefly listed in
the Appendices.



Reviews and analysis of the microstructures and failure mechanisms of carburized steels
can be found, e.g. in [19,21-23]. Dislocation kinetics involved grain boundaries and interfacial
properties have been introduced, e.g. by [23] in the perspective of physical metallurgy and by [15,
36] in solid mechanics. To link grain boundary properties with alloy’s mechanical properties, an
impurity segregation model has been developed in [6]. Thermodynamics analysis and more
generalized investigations of grain boundaries chemistry can be found, e.g. in [7, 23]. Based on
the “universal feature” [26] of atomic bonding [11,12,67], interfacial debonding and cohesive
models for solid mechanical computations have been proposed in [15,29] with the applications
for bulk phase fragmentation [38] and interfacial crack propagation [36]. A systematical study of
the elastoplastic constitutive model for polycrystalline system has been introduced in [9].
Regarding the general issues of grains and grain boundaries, researches and developments have
been reported, e.g. in [18, 34, 35, 55, 66] of crystal plasticity, in [31-33] of impurities grain
boundary segragation, in [43] of grain boundary creep and sliding, in [6, 7, 31] of intergranular
fracture, in [68,69] of the length scale in plasticity and in [39, 13, 14, 40-42] of fracture
mechanics. Literatures of computation science in general can be found, e.g. in [44-49, 70, 71] of
the density function theory [2,3] based quantum mechanics computation and in [50-53] of finite
element.

In recent years great activities can be found regarding multiscale analysis and its
application to materials science, for examples, these in [57-63, 20, 28]. In [63] a scheme has been
proposed to compute the average heat conductivity of a cell containing aggregated heterogeneous
composite inclusions through the cell’s surface heat flow and temperature. This model has its
counter part in solid mechanics analysis, i.e. the cell model originally developed in [64]. A
quasicontinuum method, by which the basic unit is a finite element that contains atoms, has been
developed in [60,61]; the energy potential of the “embedded atomic method (EAM)” [48,49] has
been adopted as the strain energy in the finite element. In the “coarse-grain” method [58] an
atomic segregate forms finite element to represent a thermodynamic system, by which both
mechanical deformation and statistic-based thermo-vibration-induced temperature are taken into
account. A concurrent scheme between different physical domains in continuum theory has been
developed in [62]. A formalism coupling density-function theory-based simulation in one domain
to the continuum mechanics simulation in another domain has been developed in [57]. A
“Moving Particle Finite Element Method” (MPFEM) has been developed in [20, 25, 27, 30],
which combines the salient features of finite element and particles to represent a solid. In order to
accurately and efficiently represent atomistic behavior at microscale, a “Particle Dynamics”(PD)
method has been developed in [20,28]. The MPFEM and PD are the computational methods
applied in this study; detailed description of the ‘“Particle Dynamics™ and application to bcc iron
are given in the sections 2.5-2.7 of [20]. The original concept for this class of methodologies can
be found in the Lorentz’s original work that establishes the connection between mean field
electrostatic theory and microscopic theory, as described by the chapter 27 of [67].



Fig. 1 An experimental observation of intergranular fracture

2. MODEL AND PROCEDURE DEVELOPED
2.1 An Integranular Fracture Model

For an engineering component such as a gear under cycling contacts, the hardeness,
strength and fracture toughness at its carburized case are the governing properties that determine
performance. High case strength and hardness are usually produced by quench and tempering,
whereby the tempered martensite is the major constituent that provides surface hardness with
enhanced wear resistance. Fracture toughness, which also contributes to fatigue life, represents
the resistances against micro-crack initiation and growth. Obviously, grain boundary properties
have profound effects on the initial stage of intergranular separations — the phenomenon
presented in Fig. 1. Considering a carburized steel case as a system, the strength and fracture
toughness of this system are determined by the combinations of the chemical composition, phase
constituents and micro and sub-micro structural parameters. These parameters are mainly
associated with the micro- and nano-scale heterogeneities; such as precipitates, solute atoms and
second phase particles in grains, lattice misorientation and impurities segregation at grain
boundaries, grain size and morphology, dislocations motions, and the interactions among them.
From the viewpoints of strength and fracture toughness, these parameters can be distinguished
into two classes: the heterogeneities inside a grain which determine the mechanical properties of
the grain; and the complexities around grain boundaries which determine the interaction between
adjacent grains; by the latter grain boundary adhesion is the dominant factor among others.

Hence, an intergranular fracture model is developed to investigate the failure process in
the carburized steel case, which is illustrated in Fig. 2. In this diagram the macroscale crack is
guided by the damage evolution within the small process zone in close vicinity around the crack
tip. For intergranular fracture, evolution of damage and subsequent macro-scale crack growth are
dominated by the decohesion process of grain boundary, because generally the martensite-phase-
dominant grain is mechanically much stronger than the adhesion to adjacent grain at its boundary.
This grain boundary decohesion is governed by the traction-separation law between to adjacent
grains, as plotted at the upper right corner of the figure. The model in Fig.2 highlights grain
boundary decohesion - the dominant mechanism of intergranular fracture. This decohesion
essentially is a process to break the interatomic bond at quantum scales. Therefore, this model
schematically establishes the correlations among macroscale crack growth, microscopic damage
evolution and atomistic debonding. To obtain quantitative predictions of the strength and



toughness of carburized steel case, the accurate computations in the following respects are
necessary:

- grain boundary adhesion,

- Peierls’ stress barrier and cleavage strength of grains,

- microscale constitutive modeling to integrate the effects of grain deformation and grain
boundary decohesion,

- to embed the results of microscopic modeling into the macroscopic analysis of the
damage-induced failure process.

In the following subsections the corresponding solutions will be introduced step by step.

The model presented in Fig. 2 provides a possibility to develop a multi-scale analytical
tool for establishing the quantitative relationships among alloys and compounds selection, process
design, microstructure optimization, and desirable properties for carburized steel case, as
conceptualized by the flow chart in Fig. 3.

adhesion
energy

Macroscale Crack Tip 5\

Crack Tip Damage Zone

Grain Boundary Decohesion Model

Fig. 2 A proposed multi-scale intergrannual fracture model
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Fig. 3 The fundamental idea behind the proposed model in Fig. 2

2.2 Experiments

The uniaxial tension test and the compact tension test of fracture toughness for the AISI
8822 carburized steel have been conducted by Dana Corporation, following the ASTM Standard
E8 and E399, respectively. The specimens have been fully carburized through entire thickness up
to 0.91 pct carbon to represent the case part of a gear made of the steel, which is carried out with
prolong duration of carburization to ensure carbon distributed uniformly through entire sample
thickness. The tensile tests and fracture toughness tests were performed in normal laboratory
environment at ambient temperature with no humidity control. Fracture toughness tests were
conducted with the ASTM Standard Compact Tension specimens (CT) of thickness B: 5.08 mm,
length W: 50.8 mm, and height: 60.96 mm. The microscopic observation indicates that the
tempered martensite is the dominant constituent (>80%). The grain size is in the range of the
ASTM E-112 size 9 with the average diameter of 16 microns. The measured mechanical
properties and the chemical composition are listed in Tables I and II, where the tension strengths
are measured at the uniaxial tension specimen after fully carburization.

Table I: Chemical Composition (wt%)

C Mn Ni Cr Mo Cu S P Si Fe

0.91 1.01 0.51 0.57 0.30 0.15 0.0024 | 0.009 | 0.35 balance

Table II: Mechanical Properties

Young’s Yielding Ultimate Engineering Section
module (GPa) Strength (MPa) | Strength (MPa) | fracture strain | reduction (%)
(%)

220 978 1369 13 2
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Fig. 4 An alternative expression of the multi-scale, multi-physic model of
the intergranular fracture introduced by Fig. 2

2.3 A Bottom-Up Analysis Procedure

Fig. 4 details the procedure introduced by the model of Fig. 2. Starting at its right upper
corner, a finite element model of the ASTM Standard CT specimen is plotted which is used to
measure the conventional macroscale fracture parameters, such as CTOD (crack tip opening
displacement), CMOD(crack mouth opening displacement), Stress Intensity Factor and J-integral.
These parameters correlated to each other, defining a fracture toughness of the steel [39]. For
carburized steels, the evolution of the crack tip damage zone is mainly dominated by the
decohesion of grain boundary, as illustrated by Fig. 2. A numerical procedure, which is termed
“Moving Particle Finite Element”(MPFEM) [25, 27, 30], is employed to integrate the
deformation of grains and separation of grain boundaries through computation over the damage
zone, as illustrated in the box left from the CT specimen. An intergranular decohesion can be
mathematically described by the traction-separation relations between grain boundaries, which is
similar to splitting an atomic array in bulk phase but with deducted adhesion energy due to
localized concentration of heterogeneities, as illustrated in the plot left from the box of crack tip
damage zone model. Hence, this traction-separation relation can be computed accurately by the
sub-atomic quantum mechanical computations, e.g., on the primitive cell that is plotted at the left
lower corner of the figure 4.

The aforementioned procedure can be outlined by the flow chart depicted in Fig. 5; the
details for each part will be explained in the following sections. The numerical algorithms
developed in [20, 25, 27, 30] have been applied in this procedure at various scales.
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Fig. 5 A bottom-up procedure to perform the analysis and computations for the intergranual
fracture model of carburized steel case introduced by Figs 2. and 4; where &, &', ¥, and

[ refer to ferrite, martensite, austenite, and bainite phase, respectively.

2.4 Sub-Atomic Computation
2.4.1 Interfacial adhesion and Interatomic potential

Considering fracture as a split in an atomic array, the interfacial adhesion between the
two separated surfaces governs the failure process of the material. On other hand, a fracture
breaks bonded atoms pairs; the corresponding separation force is determined by interatomic
potential. Obviously, the interaction between two neighbored atoms is not quantitatively identical
to the adhesion between two adjacent atomic surfaces. The relationship in-between is crucial for
establishing a hierarchical linkage in a multi-scale analysis, which is the issue to be clarified in
this subsection.

Fig. 6 shows two chunks of atoms arrays, Q, and €., apart from each other with a
distance 4, . T(lN ) the attractive (or repulsive) force per unit area between the two paralleled
surfaces S, and S,, can be expressed as the derivative of an interfacial cohesive potential
E“"(A,)[26]:

aEcoh (ﬂ’N )

T(ZN): I )
N

o))

On other hand, let f (r) be the interatomic force between two individual atoms A and B in Q ,

and Q ,, respectively, with a distance r; and E (r) be the corrresponding interatomic potential:



fr)= @)

Assuming both ©, and Q,to be semi-infinite, the total force acting upon the single atom B

from all atoms in € , is:

2 V4 )
fo(W)=n, [cosO- f(rHQ, =n, [ rdp[2rcosade | 9E(r) ,, 3)
Q, 0 0 Ay r

cos@

where n, is the number of atoms per unit volume in Q , . So the total traction/impulsion between

the two bodies, represented by the adhesion T(/iN ) between the surface pair S, and S, yields

IE*" (Ay)

o, - T)=n, [ as|f(Aaz (4)

unit area Ay

where n, is the number of atoms per unit volume in £, .

Fig. 7 The difference between interfacial adhesion and interatomic traction/repulsion: the normal
traction/separation law between surfaces S, of Q, and S, of Q, is a function of the

separation A, ; whereas the cohesion between atoms A and B is determined by the interatomic
distance r when omitting the effects of spin-polarization.

The equations (3) and (4) establish the analytical relationship between interatomic
cohesion and interfacial adhesion. For example, quantum mechanics computation usually gives



the interfacial adhesion potential £ “" between the opposite surfaces of two atomic slabs [26,
46]. When E“" can be written as a polynomial as following:

a2 aS an
+ + #2238, 5
G A () " )

E“ (ﬂ’N ) =

where a,, i =2,8,..., are constant. By substituting (5) into (4) and (3) one finds that the
corrresponding interatomic potential yields:

rio=se) 7] (7]

3 12
. :—7”A”192§o67[ 9 ad  a =0 %

if

Eq.(6) is the conventional Lennard-Jones Potential for a biatom molecule system; where o is the
“collision diameter” that equals the separation when E is zero; ¢, is related to the “well depth”,

i.e. the minimum of E in the energy-separation ( E,r) curve, which represents the equilibrium
position:

f(r)= =0 and ry = 20

Thus, the first term on the right hand of (6) characterizes the repulse force when a pair atoms
come closely (7 < r,); whereas the second term governs the traction when they separate away
from the equilibrium position (r > r;). It should be noticed that the bi-atomic potential (6) is

under the approximation to omit the effects of hyperfine structure of atoms, although it has been
widely applied for the computations of large molecular system,

Similarly to (1), the stress against sliding between two atomic surfaces, denoted as 07 , is
determined by the derivative of Peierls-Nabarro energy potential again stacking fault E¢ [15, 20,
547

JE,

A,

o, = and  Eg =¥y sin4(”ZTj ®)

where A, is the relative sliding; ¥, is the Peierls-Nabarro energy barrier against dislocation.

2.4.2 Geometrical discontinuities and grain boundary



In Fig. 6 the two adjacent surfaces S, and §, are parallel to each other but no

assumption about the details, for example, lattice’s orientations of €, and Q. Grain boundary

essentially is accumulated discontinuities in a periodic distribution of atomic array, as categorized
in Fig. 7. The discontinuities, in conjunction with impurities segregations, may reduce the grain
boundary adhesion energies. To demonstrate the concept, in this paper only the tilted grain
boundary in polycrystalline bcc iron system, i.e. the case (a), is taken into account, focusing on
the effects of phosphorous segregation on fracture toughness. Obviously, the adhesion potential at

grain boundary, denoted as E ;Zh , will be different from the £ in bulk phase:
E;zh — Ecoh _ AEti]t _ AEsegmgate (9)

where AE™ and AE**"*“ are the deductions of adhesion energy due to tilt and impurities
segregation, respectively. The similar expression also applies to the ¥, in (8), denoted as 7;/,,5 .
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Fig. 7 Geometrical heterogeneities caused by grain boundary

2.4.3 Impuritie segregation
When chemical composition of a steel is known, an issue is to find how many the hazard
elements, such as phosphorous and sulfur, segregated around grain boundaries. Let the symbol

I, PG to represent the weight percentage of phosphorous (P) segregated at grain boundary, the

Langmuir-McLean model [17] gives an estimate of weight percentage of phosphorous at grain
boundary:

ALY = ! (10)

AG’
1+ xexp| ——
RT

where Ay is the increment of /¥ during a heat treatment at a thermodynamic equilibrium

state with the temperature 7, AG’ is the chemical potential of the corresponding bulk phase
which is about -78 kJ/mol™ (at 300K) [6], R is the universal gas constant and x is to be calibrated
by test.

The equation (10) indicates phosphorous segregation can be controlled through adjusting
heat treatment, which also provides a way to estimate /| PG according to heat treatment history.



The experimental results of DANA Corp. have been used to calibrate the constant x. The range of
Iy for the steel analyzed is below 10%.

2.4.4 DFT[2,3] Computation

In order to obtain E;‘b’h and 7/;/; for establishing theoretical traction-separation law, the

Density Function Theory[2,3] based quantum mechanics computations have been conducted,
applying the full potential all electrons linear augmented plane wave (FLAPW) numerical codes
[4, 44-46,71]. The procedure to set up periodic atomic supercells for this class of computations
has been introduced in [4,70].

Fig. 7 indicates the types of geometrical discontinuities at grain boundary are enormous.
Two kinds of atomic cells to model the grain boundaries with two tilted angles 8 : X1 (9 = O”) and

x5 (0 =51.13° ), are computed at ground state. The X1 grain boundary is the case that two adjacent
grains have the same lattice’s orientation but with phosphorous segregation in-between, which is
a degenerated case of low-angle grain boundaries. When this is no segregation, it becomes a bulk
crystal. The primitive cell of ¥£5 grain boundary is given by the plot on the left hand side of Fig.
8, which is a typical high angle grain boundary. The corresponding distributions of electron
charge density for the boundary cell and X5 surface, respectively, are plotted on the right hand
side of the figure. Applying the procedure introduced in [26, 32, 20], the differences between
them and those without phosphorous segregation define the AE**"***“ whereas the difference
between non-segregation X1 and X5 define the AE™ caused by Z5 tilt in (9). Grain boundaries

with other tilted angles less than (9 = 51.13”) are interpolated between zero and the AE™ of £5.
The twin boundary is not taken into account for the intergranular fracture studied.

The computed adhesion energies for bulk bee iron and for the X1 grain boundary with
phosphorous segregation are plotted in Fig. 9a, by which the discretized numerical data were
fitted into polynomials (5-7). As expected, a remarkable drop in adhesion energy can be seen
when P segregate presents. For the £5 boundary AE™ | the reduction of adhesion energy, is
about 18% when I'S =0. Considering grain boundary represents a “discontinuity” of periodic
array of atoms, the reasons that cause the drop of adhesion energy can be: (i) the segregated
interstitial phosphorous atoms weaken metallic Fe-Fe bonds; (ii) the tilted boundary is actually an
array of empty sites that enlarges the interatomic distance between the atoms from adjacent
grains; (iii) segregated P atoms or titled boundary breaks the periodicity in bulk phase, which
alternates the ferromagnetic alignment of bcc iron and, thus, induces localized antiferromagnetic-
like spin-polarization ( see Fig. 9b ); it is well-known that the iron fcc crystal is
antiferromagnetic, which is with less stability as compared with bcc iron, see Appendix 1. Table

1T lists the computed values of E", AE™ and AE**“¢“* Results of other segregations or
grain boundary tilt angles can be found, e.g. in [6,10,11,31,32]. According to the computation in

[20]: 7,5 = 0.43 (J/M?). At grain boundary the relation ¥y = ¥, (E;‘b’h / E gb) is applied in this

analysis.
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Fig. 8 The supercell of X5 bcc iron grain boundary with phosphorous segregate (a) and charge
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Fig. 9. Computation of the grain boundary adhesion with phosphorous segregation



Table III Grain boundary adhesion energy for BCC iron (J/M?)

Ecoh AE tilt ( Zl ) AEtilt ( z 5 ) AE‘vegragaze (Zl ) AE‘vegragaze (Zl )
I¢=0 I¢=0 IS =4.6% ¢ =9.4%
4.97 0 1.67 0.94 1.61

where P: phosphorous; Fff : weight percentage of P segregation

2.5 A Hierarchical Multi-Scale Procedure

A major challenge for the object studied is to bridge the sub-atomic computation with
micro and macro analysis, which requires a hierarchical scheme to integrate the kinetics from
angstroms to centimeters while highlighting the dominant mechanisms. This is somewhat
different from many recently developed successful methods, for examples, [57-63]. In order to
predict the steel’s fracture toughness, the following two steps are vital important: (I) implement
the results of quantum mechanical computation obtained in the previous subsection into the
polycrystalline system; (II) to embed the information of grain-sized analysis into the inch-sized
fracture toughness specimen, so as to compute the macro-scale parameters that characterizes
material’s fracture.

2.5.1 Sub-Atomic to Up-atomic

The step I mentioned above requires to bridge the sub-atomic quantum physics with up-
atomic continuum analysis. As plotted in the flow chart of Fig. 5, the Moving Particle Finite
Element Method (MPFEM) is employed for this purpose. It contains the methodologies in two
perspectives: finite element and particle method. For sub-atomic to up-atomic bridging, the
‘Particle Dynamics’, introduced in [20,28], is applied to the step I. The idea of this approach is to
represent an atomic system as a particle system through lumping several atoms into a super-atom,
termed “particle”, while preserving the essential properties of the atomic system via a proposed
“equivalent stiffness rule”. This rule requires that the particle system has the same periodic
structure and stiffness as the original system but with a larger inter-particle spacing that is
determined according to the scale of interest, see Figs. 10a,b. The sub-atomic physics, which may
dominate the mechanical behavior at up-atomic scales, is preserved through transforming the
inter-atomic potential into an inter-particle potential by the following way:

Assuming E“”" to be the interatomic potential, like (6), for the system in Fig. 10a.,
when it is suffering a deformation, for example, a, becomes a, ; accordingly R — R, = Na, in

the particle system of Fig. 10b. This deformation can be represented by a uniform strain field &;

atom

for both systems. The corresponding stress tensor O,
system yield [26, 56]:

and stiffness tensor C;3;" of the atomic

O_fjtom — p aE _ zgik aE (lla)
o€, 0E,;

and



atom

80',.].
(11b)

C?l()m —
ijkl
g,

where p is density and the dummy summation rule is applied. The second term on the right hand
side of (11a) is corresponding to finite strain [56], which can be omitted when deformation is
small.

Similarly, for the particle system in Fig. 10b with an inter-particle potential £

Particle *

. oE,,.. OE,, ..
G;artule =p aPartule ] 8ik aPartule (123.)
gij £ o
and
' a O_{’article
C;};rttcle — al] (12b)
gkl
The “equivalent stiffness rule” requires:
Particle __ atom
Co " =Ciy 13)
which leads to
Particl,
Gijartu e _ G;zom (14)

The equality (13) provides a group of conditions to determine E that gives the same

Particle
stresses for both systems, as confirmed by (14). However, the computational effort by Particle
Dynamics is reduced to about 1/N™ of that by atomic system for a m-dimensional case; where N
defines the size of the particle, see Fig. 10b, and m=1,2,3. An analysis of the bcc iron lattice with
grain boundary is given in [20, 28].
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Fig. 10 The “Particle Dynamics” method [20] that transfers the atomic system (a) into the particle
system (b) through segregating the atoms within the cell of dimension R into a particle whereas
an “equal stiffness rule” is imposed to ensure the two systems having the same elastic properties.

According to the procedure introduced above, one can find that as compared with other
successful multiscale methods, e.g. the Quasicontinuum [60, 61], the novelty of the Particle
Dynamics lies in the following two perspectives:

- The Particle Dynamics (PD) is a ‘“hierarchically-structured” method to transfer an
atomic system into a particle network that keeps the same lattice structure as the original;
by contrast, in the methods of [58, 60,61] a finite element contains a set of atoms and the
finite element net work may have the slip motion that differs from the particle network.

- The “equivalent stiffness rule” of Particle Dynamics provides a unique way to
reproduce an inter-atomic interactions as an inter-particle interaction while preserve the
origin of mechanical interatomic interaction at mesoscopic level.

Applying this approach, the quantum mechanical computation-based interfacial
adhesions are applied to describe the grain boundary traction-separation relation for the
polycrystalline system that plotted in the second column from right in Fig. 4, where each grain is
a crystal made of “particles” which are segregations of atoms. The traction-separation relation has
been implemented into a group of “cohesive elements” that connect each grain boundary surfaces
pair, e.g. the AB in Fig. 11a. On other hand, all grains are treated as bcc crystals with the same
[001] direction perpendicular to the two-dimensional plane but randomly pre-assigned in-plane
orientation. Each particle in a grain defines a “node”, the connections among these nodes form
small finite elements that partition the grain. The finite element is with the average size about one
order smaller than average grain size, as illustrated in the middle box of the second column from
right in Fig. 4. The finite elements obey the constitutive relation of crystal plasticity with Taylor’s



hardening (isotropic hardening) [18]; which is governed by the effective stress-strain relation that
is calibrated according to the quantum mechanics analysis of bulk iron phase through the
“Particle Dynamics” method, as described in [28]. The Moving Particle Finite Element method
[25,27,30], which integrates all atomic segregates into a polycrystalline network that combines
the “cohesive elements” and grain finite elements, has been applied for the micro-scale
computation.

grain 2

(a) grain boundary (b) triple junction

Fig. 11 MPFEM cohesive elements for the computations of grain boundary separation and
sliding; (a) the cohesive element AB connects two adjacent grains that are descritized by the finite
elements associated with points A and B; where Sy is the “master surface” enhanced to the node A

in numerical analysis, defining the normal separation A, and relative sliding A, respectively;

thus, the grain boundary surface associated with node B is defined as “slaver surface”; (b) at triple
junction the three cohesive elements, i.e. AB, AA’, A’B, and corresponding master-slaver surfaces
pair, are required in analysis. Moving Finite Element Method [25, 27, 30] is applied to integrate
cohesive elements and grains.

2.5.2 Micro to Macro Scale

As mentioned in the previous subsection, the size of finite element inside a grain is in the
order of micron; for a grain by grain micro-structured two-dimensional computation of a ASTM
standard CT specimen, a model with about 6.25x10"" finite elements (10" elements for 3D) is
required. Obviously, more effective scheme will be preferred since the damage caused by
intergranular cracking is limited only within the close vicinity of the crack tip; the rest part of the
specimen can be described by well-developed theory of isotropic and uniform plasticity; for the
latter, finite element with the size of millimeter is sufficient.

In this analysis a scheme is developed by which the CT specimen is divided into two
parts: a small chunk of material surround the crack tip which is modeled by the polycrystalline

microstructure; an example of this crack tip zone, denoted as Q, is plotted on the right upper

corner of Fig. 12. The rest part of the specimen, denoted as €, is modeled by the continuum J,
flow plasticity theory using regular finite element. The external load applied to the specimen is



transferred into the crack tip through the continuity conditions of traction T' and displacement %,

on the shared boundary X . The detail of the three-dimensional meshes around X in £ is given
by Fig. 12, which shows the adoption from the relatively small finite elements near X to the

coarse elements away from it. 7' and %, at the X on the middle section of the 3D block define

the plane strain boundary condition on the X of Q. This is similar to the “boundary layer

method”, e.g., in [37], by which the stresses of asymptotic analytical solution, such as mode-I K-
field [39], is applied to the outer boundary of crack tip zone.

u T

“_‘::

v
—

A

Fig. 12 The developed scheme divides a standard specimen into two parts: the polycrystalline
slab €, containing, for example, a sharp crack tip, as plotted on the right upper corner; which

“shakes” hands to the rest of the specimen through the continuities of displacement and J-integral
on the boundary X

However, when massive microscale intergranular cracks occur within €, the stresses on
Y may decrease due to material’s softening while #, still increases. In other word, the traction

T alone does not uniquely determine the deformation field inside €2,. By contrast, the #, on X

is monotonic when external load in the form of displacement increases monotonically. Generally
it is very difficult to satisfy the both stress and displacement continuities simultaneously by
boundary layer method; instead, a J-integral[13] based “‘shake hand” scheme is developed which
requires the satisfaction of the continuous conditions of displacement and J-integral on X ; the
latter represents the energy that flows into the crack tip.

This “shake hand” scheme includes three computations: beside the computation of the
part  and that of the polycrystalline system €, with intergranular cracking, respectively, the

third computation of the entire specimen (€2, +£€2) is conducted by which no intergranular
cracking in €, so all material are obeying the same plasticity law. The quantities associated with

these three computations are distinguished in turn by the superscriptions £, Q , and Q + Q.



Then, for the two cases without intergranular cracking, the corresponding J-integral, applied load
P, and CMOD (crack mouth opening displacement) U are J®, P%,U® and

J e Pt Ut respectively. The reason for the third computation is to find the external

load (P,

1
lamage

) and CMOD (U3 ) corresponding to the computation of Q, with intergranular

damage

cracking induced damage.

The displacement on X obtained from the third computation, denoted as 17,9’+Q , 1s used
as the boundary condition imposed on X for the computation of the polycrystalline system €,
with intergranular cracking, which leads to the corresponding J-integrals J % on X. On other
hand, a reference crack tip opening displacements (CTOD), U, , defined as the integral over

Y of the vertical component of #, with respect to dx and then divided by the length of the
projection of ¥ on the horizontal coordinate x, is recorded for all three computations. For a given
Uepop: P70 > P2, UM =zU® | and J*® >T%> J® . So Py

damage °

the corresponding

external load to the computation of € with intergranular cracking, is obtained through the
following interpolation:

JE —J°

Qf
P Jore _ 0

damage

= P2 + (P - p?) (15)

which is the load that is actually applied to the specimen. This procedure is under the
approximation that the displacement field in £ changes monotonically when the CT specimen is
under a monotonic load in the type of load-line displacement. This is a reasonable approximation
for small-scale yielding.

Hence, the applied load to the CT specimen induces macro-scale crack mouth opening
displacement (CMOD), which links to the micro-scale computation on the polycrystalline slab
€, through the shared displacement boundary condition and consistency in J-integrals. This two-
level computational scheme reproduces the processes of macro-scale crack growth-induced
fracture based on the simulation of the damage evolution caused by grains, grain boundaries’
sliding and separation in the local area surround the crack tip and the deformation in entire
specimen; which enables the quantitative predictions of the relationships among fracture
toughness, applied load, grain, grain size, grain boundary adhesion, and the associated sub-atomic
physics, as illustrated by the flow chart in Fig. 5.

3. RESULTS AND DISSCUSION

Fig. 13 is a set of snap-shots of the evolutions of stress field in the damage zone €,
surrounding a blunted crack tip of the CT specimen, when applied load increases and the
corresponding grain boundary separation occurs in €, . Fig. 14 gives the comparison between the

simulated load-CMOD relation and experimental results. Fig. 15 shows the computed fracture
toughness according to ASTM E399 when the content of phosphorous varies. As expected, higher
content of phosphorous leads to lower fracture toughness within the range computed.
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Fig. 13 Intergranual fracture —- MPFEM microscale simulation for the case with blunted crack tip
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Fig. 14 The computed Load-CMOD curves for the specimens with different weight percentages
of phosphorous
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Fig. 15 The relationship between fracture toughness and the content of phosphorous,
computational results , by improving grain ductility, the curve may move up, as indicated by the
arrow A.

It is no doubt that phosphorous segregates will embrittle metal. However, by comparing
the drop in fracture toughness plotted in Fig. 15 and the deduction of adhesion energy plotted in
Fig. 9a when phosphorous increases, the changes in the former is much more significant than that
in the latter. This can be explained by the simulations in Fig. 13, which shows a severe stress
concentration at triple-junctions and the junctions of multi-grain boundaries when the average
amplitude of the stress field is moderate. Thus, each junctions becomes a source of microscale-
cracking, which causes decohesion along grain boundaries. The accumulation of these
microscale-cracks forms a damage zone ahead a macro-scaled crack tip. The evolution of this
damage zone leads to the subsequent macroscale crack growth. Consider a material is a system,
an intergranual fracture essentially is the result of the interaction between grain boundary
separation and deformation of grains. Therefore, removing the stress concentration at junctions of
grain boundaries and increasing grain boundary adhesion are the two equally important goals for
improving the mechanical properties of the steel. The study conducted inspires the ideas to
achieve the first goal by increasing grain ductility through alloy additions, e.g. Ni, and phase
constituents, e.g. with optimized ratio of bainite and retard austenite; while to improve grain
boundary properties through the following two ways: (i) adding grain boundary clue elements
such as B and Nb; which also have the function to pin grain boundary so reduce grain’s size; (ii)
alloying with appropriated processing to promote the formations of (M, P),C, and (M, S),C,
compounds which extract P and S out from grain boundaries.

4. Conclusions and Suggestions

From the viewpoint of mechanical analysis, this paper reports an effect to understand the
intergranular fracture phenomenon in polycrystalline system based on the underlying fundamental
physics. A hierarchical, multi-scale procedure has been developed through quantitatively
integrating the information obtained from a series of density function theory-based computations
to the corresponding micro and macro-scale particle-finite element analysis. This procedure has
been applied to an analysis of AISI 8822 carburized steel case to explore the possibilities of



improving toughness while sustaining desirable strength and wear resistance. This analysis
concludes that for the studied polycrystalline system consisting of grains with high hardness and
strength, an intergranular fracture is governed by the interaction of grain boundary adhesion and
stress concentration at triple and other multiple grain boundaries’ junctions. Hence, optimized
mechanical properties for this class of steels can be achieved through the following conventional
ways:

- Refine grain size: although finer grains may be detrimental to toughness, however,
when the average size is not less than 10> nm, smaller grains may reduce the local
resistance against dislocation motion around grain boundaries-junction while increase the
energy barriers against large scale yielding due to increased zigzag in slipping paths,
which elevates the strength of an alloy according to conventional Hall-Petch relation.
Also, finer grains enlarge the total area of grain boundaries which reduces average
impurities segregation per unit area of grain boundary. Hence, the trade-off of these
factors may finally lead to a positive effect to the system.

- Alloying and processing to simultaneously improve grain boundary adhesion and
grain’s ductility: high grain’s ductility reduces the stress concentration at triple-junctions;
a summation of these two mechanisms may result in the transition from intergranular
fracture to trangranular fracture.

Appendix
In the following text boldface symbol denote tensor, the order of which is indicated by
the context. Plain symbols denote scalars or a component of a tensor when a subscript is

attached. Repeated indices are summed. For two order tensors a and b, a = laij J, b= lbij J; then
a’ =la,]. a-b=|agby| a:b=lazb; | and ab =|a; by |.

I Feromagnetic and Antiferromagnetic phases of Iron [65]
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Fig. Al: (a) Comparison of the ground state ferromagnetic and antiferromagnetic
system energies of unit atomic cell when it transforms from bcc to fcc crystal along “Bain
path”; where 77 is the order parameter to characterized the lattice constant (77 =0: fcc,
n =1:bcc); so the fce crystal has antiferromagnetic structure with higher ground state

energy than bcc. (b) The magnetization moment per atom when the lattice structure varies
along Bain path.
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Fig. A2: Spin-charge density distributions for bulk fcc (left) and bec (right).

II: About the “Moving Particle Finite Element Method” (MPFEM) [25, 27, 30]

The network that connects all particles obtained from “Particle Dynamics”[20] forms a
finite element mesh, which is the same as the mesh that represents a discretized body in solid
mechanics finite element analysis [50-53]. Fig. A3(a) shows an example of such a solid body €

with the boundary 02, of force boundary condition (natural boundary condition) and 92, of

displacement boundary condition(essential boundary condition). It has been partitioned into 9
triangle elements in (b). Each corner of a triangle element is a particle that is termed “node” in
finite element analysis. In the i™ element, the strain incremental tensor inside a finite element,

denoted as Ag, is expressed as the function of the displacement increments vector A, at all
nodes associated with this element:

Ae =B, - Au, (bl)

where the rule of dummy summation for the repeated index i applies; B, is the “differential

matrix”, determined by displacement-strain relation (e.g. Cauchy geometric relation) and the
interpolation scheme (shape function) of the finite element.



(a) (b)
Fig. A3: The conception of MPFEM applied to grain boundary with cohesive element xx’;

Assuming that the elements E|, E,, E, belong to one grain while E,, E,, E, belong to

another grain, then the node between two grains actually is a “‘cohesive element” that connects the
particles from two adjacent grains’ surfaces; for example, the x and x' in Fig. A3(c). The
“Moving Particle Finite Element Method” [25,27,30] is able to solve the equilibrium condition at
nodes through the virtual work principle.

Considering the node x in the case of Fig. A3(b), the virtual work principle-based
equilibrium condition at this node implies that the work done by a force AF _imposed on the

nodal x , which is the product of AF and a virtual nodal displacement Au _ at this node, equals

the summation of the strain energies caused by Au . in all elements shared the node x:

6 6
AF,-Auy = (Ac : AelV; =Y (A : B; - Au; Y (b2)
i=1 i=1

where V; is the volume of the i" element; Au; = [Au x ,O]T is a vector that contains the
displacement increments at all nodes associated with the elements adjacent to the node x; but by
the virtual work principle it is assumed all these nodal displacements are zero except Au _; Ao is

the stress increment tensor that is correlated to Ag through the constitutive law:
Ao =C, : A¢ (b3)
where C, is the tangential stiffness matrix of the bulk phase, which is a fourth order tensor.

In MPFEM there is no restriction to the type of the elements in the nodal equilibrium
condition (b2). For the case in Fig. A3(c) the node x is at a grain boundary formed by the upper
edges of the triangle elements E; and E;. The developed cohesive element xx’ establishes the
connection between the two sides of the opposite grains. Similar to (b2), the equilibrium
condition at the node x can be expressed as the following summation.



3
AF -Au, =Y (Ac: B, Au,V +AF “" - Au®" (b4)

i=1

where AF ““" and Au®“" are the force and elongation vector of the cohesive element; when
there is no displacement on the other end of the cohesive element:

Au™" = Au_=[1,, A1 . (b5)
where A, and A are the normal and tangential separation in (1) and (8), respectively.

When all other nodes are fix but node x has the displacement Au _, one can remove Au
from the both sides of (b4), which becomes the equilibrium condition at this node in matrix form:

AF =K -Au, (b6)

where K = K t + K gecon s the grain matrix tangential stiffness K, and decohesion stiffness

K j.con are defined as below:

3
K =>(B":c :B)v (b7)
i=1
and
coh
Kdecoh = M (b8)
Ay, 4s)
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