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ABSTRACT 
Breakthrough of computational alloy’s design lies in the capabilities to quantitatively and 
completely integrate key-mechanisms in each processing step into a unified procedure that is able 
to establish the quantitative relationship between chemical composition, nano/microstructures, 
properties and performance. For this purpose, a multi-scale model of intergranular fracture has 
been developed to analysis the directly quenched after carburizing, carburized steels. This class of 
steels is highly susceptible to intergranular fracture which often results in relatively low fracture 
toughness. To achieve improved performance, the crucial issues are to clarify the dominant 
mechanisms that cause fracture and to distinguish the effects of alloy additions and impurities on 
the transition between intergranular and transgranular failure modes. Based on the computations 
at micro and quantum scales, the developed procedure has been applied for the AISI 8822 with 
carburized case steel, providing the prediction of fracture toughness that is compared with 
experiments. This analysis reveals that an integranular cracking is mainly triggered by the triple-
junction stress concentration when grain boundary adhesion is low. An improved toughness can 
be achieved by reducing impurities grain boundary segregation while increasing grains’ ductility.    
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1. INTRODUCTION 

Although rapidly development of computational engineering science continuously 
provides new means and tools to investigate deformation, fracture and failure phenomena of 
alloys, challenge remains in obtaining quantitative relationships between chemical composition 
and alloy compounds, micro and nano structures, micro and macro properties, laboratory 
characterization and engineering performance through hierarchically integrating key-mechanisms 
at each process step while highlighting dominant mechanisms, so as to enable a thoroughgoing 
computational material’s design.  
 

Quantum mechanics provides fundamental knowledge of the atomic-electronic structures 
of a material, which determines corresponding micro and macro properties[1-4,11,12,26]. To 
investigate material’s properties in general, at sub-atomic scale a metal is usually treated as a bulk 
phase formed by periodic atomic array that obeys Bloch’s theorem [67]. However, a metal’s 
failure is often triggered by structural discontinuities in lattice; for example, dislocations. At 
microscale the random-distributed heterogeneities such as grains, second phase particles, and 
solution atoms, essentially dominate the kinetics of an alloy when environment changes[5-
9,19,20,23,24,43]. Nevertheless, at macro-scale a structural evolution, for example, a plastic 
deformation that is an average of lattice’s distortion and dislocation, is often modeled again under 
the approximations of uniform and continuous through constitutive relationship like stress-strain 
law in the framework of continuum mechanics [10,13-18,43]. This bottom-up, hierarchical 
variations in material’s structural modeling reflect the challenges remaining for alloys’ design, 
which also reveal the natural complexity of a material. An effective and quantitative analysis 
procedure to integrate sub-atomic physics with up-atomic mechanisms will bring significant 
benefit for exploring new materials with lower cost and better performance. An effort has been 
made in this paper is to develop such a procedure to study the failure mechanisms at different 
scales that may affect the fracture toughness of carburized steels case.   
   

Directly quenched after carburizing, carburized steels, are traditional materials for 
machine components like gears in heavy energy transmission systems [19,21,22]. The case 
microstructure of this class of steels consists of low temperature tempered martensite and retained 
austenite, which is highly susceptible to intergranular fracture that often results in relatively low 
fracture toughness. Fig. 1 is a fractography of an AISI 8822 fully carburized specimen with 
multiple intergranular cracks. To achieve improved performance, it is vital important to clarify 
the mechanisms that cause intergranular cracking and to distinguish the effects of alloy additions 
and impurities on the transition between intergranular and transgranular failure modes, so as to 
find optimized chemical composition and heat treatment process for desirable properties.  
 

Based on the literatures cited in this paper and the authors’ previous works [20, 25], a 
multi-scale analysis model of the intergranular fracture in carburized steels case is proposed and 
an associated computation-based procedure is developed. This approach focuses on grain and 
grain boundary properties, especially phosphorous segregation, and their effects on the steel’s 
fracture toughness. This procedure hierarchically implements the quantum mechanical 
computation into a microscale polycrystalline system with plasticity finite elements and cohesive 
law, which is embedded into the computation of a laboratory-sized specimen to predict fracture 
toughness. As an example of application, the analysis of AISI 8822 carburized case steel is 
performed and the obtained results are compared with experiments. The main object of this paper 
is to introduce the concept, methodology, and main scheme of the developed procedure. The 
detailed algorithms at each scale are either described in the cited literatures or just briefly listed in 
the Appendices.   
 



Reviews and analysis of the microstructures and failure mechanisms of carburized steels 
can be found, e.g. in [19,21-23]. Dislocation kinetics involved grain boundaries and interfacial 
properties have been introduced, e.g. by [23] in the perspective of physical metallurgy and by [15, 
36] in solid mechanics. To link grain boundary properties with alloy’s mechanical properties, an 
impurity segregation model has been developed in [6]. Thermodynamics analysis and more 
generalized investigations of grain boundaries chemistry can be found, e.g. in [7, 23].  Based on 
the “universal feature” [26] of atomic bonding [11,12,67], interfacial debonding and cohesive 
models for solid mechanical computations have been proposed in [15,29] with the applications 
for bulk phase fragmentation [38] and interfacial crack propagation [36].  A systematical study of 
the elastoplastic constitutive model for polycrystalline system has been introduced in [9]. 
Regarding the general issues of grains and grain boundaries, researches and developments have 
been reported, e.g. in [18, 34, 35, 55, 66] of crystal plasticity, in [31-33] of impurities grain 
boundary segragation, in [43] of grain boundary creep and sliding, in [6, 7, 31] of intergranular 
fracture, in [68,69] of the length scale in plasticity and in [39, 13, 14, 40-42] of fracture 
mechanics. Literatures of computation science in general can be found, e.g. in [44-49, 70, 71] of 
the density function theory [2,3] based quantum mechanics computation and in [50-53] of finite 
element.  

 
In recent years great activities can be found regarding multiscale analysis and its 

application to materials science, for examples, these in [57-63, 20, 28]. In [63] a scheme has been 
proposed to compute the average heat conductivity of a cell containing aggregated heterogeneous 
composite inclusions through the cell’s surface heat flow and temperature. This model has its 
counter part in solid mechanics analysis, i.e. the cell model originally developed in [64]. A 
quasicontinuum method, by which the basic unit is a finite element that contains atoms, has been 
developed in [60,61]; the energy potential of the “embedded atomic method (EAM)” [48,49] has 
been adopted as the strain energy in the finite element. In the “coarse-grain” method [58] an 
atomic segregate forms finite element to represent a thermodynamic system, by which both 
mechanical deformation and statistic-based thermo-vibration-induced temperature are taken into 
account. A concurrent scheme between different physical domains in continuum theory has been 
developed in [62]. A formalism coupling density-function theory-based simulation in one domain 
to the continuum mechanics simulation in another domain has been developed in [57]. A 
“Moving Particle Finite Element Method” (MPFEM) has been developed in [20, 25, 27, 30],  
which combines the salient features of finite element and particles to represent a solid. In order to 
accurately and efficiently represent atomistic behavior at microscale, a “Particle Dynamics”(PD) 
method has been developed in [20,28]. The MPFEM and PD are the computational methods 
applied in this study; detailed description of the “Particle Dynamics” and application to bcc iron 
are given in the sections 2.5-2.7 of [20]. The original concept for this class of methodologies can 
be found in the Lorentz’s original work that establishes the connection between mean field 
electrostatic theory and microscopic theory, as described by the chapter 27 of [67].   

   



 
Fig. 1 An experimental observation of intergranular fracture 

 
 
2. MODEL AND PROCEDURE DEVELOPED   
2.1 An Integranular Fracture Model 

For an engineering component such as a gear under cycling contacts, the hardeness, 
strength and fracture toughness at its carburized case are the governing properties that determine 
performance. High case strength and hardness are usually produced by quench and tempering, 
whereby the tempered martensite is the major constituent that provides surface hardness with 
enhanced wear resistance. Fracture toughness, which also contributes to fatigue life, represents 
the resistances against micro-crack initiation and growth. Obviously, grain boundary properties 
have profound effects on the initial stage of intergranular separations – the phenomenon 
presented in Fig. 1. Considering a carburized steel case as a system, the strength and fracture 
toughness of this system are determined by the combinations of the chemical composition, phase 
constituents and micro and sub-micro structural parameters. These parameters are mainly 
associated with the micro- and nano-scale heterogeneities; such as precipitates, solute atoms and 
second phase particles in grains, lattice misorientation and impurities segregation at grain 
boundaries, grain size and morphology, dislocations motions, and the interactions among them. 
From the viewpoints of strength and fracture toughness, these parameters can be distinguished 
into two classes: the heterogeneities inside a grain which determine the mechanical properties of 
the grain; and the complexities around grain boundaries which determine the interaction between 
adjacent grains; by the latter grain boundary adhesion is the dominant factor among others.  
 

Hence, an intergranular fracture model is developed to investigate the failure process in 
the carburized steel case, which is illustrated in Fig. 2. In this diagram the macroscale crack is 
guided by the damage evolution within the small process zone in close vicinity around the crack 
tip. For intergranular fracture, evolution of damage and subsequent macro-scale crack growth are 
dominated by the decohesion process of grain boundary, because generally the martensite-phase-
dominant grain is mechanically much stronger than the adhesion to adjacent grain at its boundary. 
This grain boundary decohesion is governed by the traction-separation law between to adjacent 
grains, as plotted at the upper right corner of the figure. The model in Fig.2 highlights grain 
boundary decohesion - the dominant mechanism of intergranular fracture. This decohesion 
essentially is a process to break the interatomic bond at quantum scales. Therefore, this model 
schematically establishes the correlations among macroscale crack growth, microscopic damage 
evolution and atomistic debonding. To obtain quantitative predictions of the strength and 



toughness of carburized steel case, the accurate computations in the following respects are 
necessary: 

 
- grain boundary adhesion, 
- Peierls’ stress barrier and cleavage strength of grains, 
- microscale constitutive modeling to integrate the effects of grain deformation and grain 
boundary decohesion, 
- to embed the results of microscopic modeling into the macroscopic analysis of the 
damage-induced failure process. 

 
In the following subsections the corresponding solutions will be introduced step by step. 
 

The model presented in Fig. 2 provides a possibility to develop a multi-scale analytical 
tool for establishing the quantitative relationships among alloys and compounds selection, process 
design, microstructure optimization, and desirable properties for carburized steel case, as 
conceptualized by the flow chart in Fig. 3. 

 

 
 

Fig. 2 A proposed multi-scale intergrannual fracture model 
 



 
 

Fig. 3 The fundamental idea behind the proposed model in Fig. 2 
 
2.2 Experiments 
 The uniaxial tension test and the compact tension test of fracture toughness for the AISI 
8822 carburized steel have been conducted by Dana Corporation, following the ASTM Standard 
E8 and E399, respectively. The specimens have been fully carburized through entire thickness up 
to 0.91 pct carbon to represent the case part of a gear made of the steel, which is carried out with 
prolong duration of carburization to ensure carbon distributed uniformly through entire sample 
thickness. The tensile tests and fracture toughness tests were performed in normal laboratory 
environment at ambient temperature with no humidity control. Fracture toughness tests were 
conducted with the ASTM Standard Compact Tension specimens (CT) of thickness B: 5.08 mm, 
length W: 50.8 mm, and height: 60.96 mm. The microscopic observation indicates that the 
tempered martensite is the dominant constituent (>80%). The grain size is in the range of the 
ASTM E-112 size 9 with the average diameter of 16 microns. The measured mechanical 
properties and the chemical composition are listed in Tables I and II, where the tension strengths 
are measured at the uniaxial tension specimen after fully carburization.  
 
Table I: Chemical Composition (wt%) 
C Mn Ni Cr Mo Cu S P Si Fe 
0.91 1.01 0.51 0.57 0.30 0.15 0.0024 0.009 0.35 balance 
 
Table II: Mechanical Properties 
Young’s 
module (GPa) 

Yielding 
Strength (MPa) 

Ultimate 
Strength (MPa) 

Engineering 
fracture strain 
(%) 

Section 
reduction (%) 

220 978 1369 13 2 
 



 
Fig. 4 An alternative expression of the multi-scale, multi-physic model of 

the intergranular fracture introduced by Fig. 2 
 
2.3 A Bottom-Up Analysis Procedure  

Fig. 4 details the procedure introduced by the model of Fig. 2. Starting at its right upper 
corner, a finite element model of the ASTM Standard CT specimen is plotted which is used to 
measure the conventional macroscale fracture parameters, such as CTOD (crack tip opening 
displacement), CMOD(crack mouth opening displacement), Stress Intensity Factor and J-integral. 
These parameters correlated to each other, defining a fracture toughness of the steel [39]. For 
carburized steels, the evolution of the crack tip damage zone is mainly dominated by the 
decohesion of grain boundary, as illustrated by Fig. 2. A numerical procedure, which is termed 
“Moving Particle Finite Element”(MPFEM) [25, 27, 30], is employed to integrate the 
deformation of grains and separation of grain boundaries through computation over the damage 
zone, as illustrated in the box left from the CT specimen. An intergranular decohesion can be 
mathematically described by the traction-separation relations between grain boundaries, which is 
similar to splitting an atomic array in bulk phase but with deducted adhesion energy due to 
localized concentration of heterogeneities, as illustrated in the plot left from the box of crack tip 
damage zone model. Hence, this traction-separation relation can be computed accurately by the 
sub-atomic quantum mechanical computations, e.g., on the primitive cell that is plotted at the left 
lower corner of the figure 4.  
 

The aforementioned procedure can be outlined by the flow chart depicted in Fig. 5; the 
details for each part will be explained in the following sections. The numerical algorithms 
developed in [20, 25, 27, 30] have been applied in this procedure at various scales.   

 



 
 

Fig. 5 A bottom-up procedure to perform the analysis and computations for the intergranual 
fracture model of carburized steel case introduced by Figs 2. and 4; where α , 'α , γ , and 

 β  refer to ferrite, martensite, austenite, and bainite phase, respectively. 
 
 
2.4 Sub-Atomic Computation 
2.4.1 Interfacial adhesion and Interatomic potential 

Considering fracture as a split in an atomic array, the interfacial adhesion between the 
two separated surfaces governs the failure process of the material. On other hand, a fracture 
breaks bonded atoms pairs; the corresponding separation force is determined by interatomic 
potential. Obviously, the interaction between two neighbored atoms is not quantitatively identical 
to the adhesion between two adjacent atomic surfaces. The relationship in-between is crucial for 
establishing a hierarchical linkage in a multi-scale analysis, which is the issue to be clarified in 
this subsection. 
 

Fig. 6 shows two chunks of atoms arrays, AΩ  and BΩ , apart from each other with a 

distance Nλ . ( )NT λ , the attractive (or repulsive) force per unit area between the two paralleled 

surfaces AS  and BS , can be expressed as the derivative of an interfacial cohesive potential 

( )N
cohE λ [26]: 
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On other hand, let ( )rf  be the interatomic force between two individual atoms A and B in AΩ  

and BΩ , respectively, with a distance r; and ( )rE  be the corrresponding interatomic potential: 
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Assuming both AΩ  and BΩ to be semi-infinite, the total force acting upon the single atom B 

from all atoms in AΩ  is: 
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where An  is the number of atoms per unit volume in AΩ . So the total traction/impulsion between 

the two bodies, represented by the adhesion ( )NT λ between the surface pair AS  and BS , yields 
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where Bn  is the number of atoms per unit volume in BΩ .  
 

 
Fig. 7 The difference between interfacial adhesion and interatomic traction/repulsion: the normal 

traction/separation law between surfaces AS  of  AΩ  and BS  of BΩ  is a function of the 

separation Nλ ; whereas the cohesion between atoms A and B is determined by the interatomic 
distance r when omitting the effects of spin-polarization. 

 
The equations (3) and (4) establish the analytical relationship between interatomic 

cohesion and interfacial adhesion. For example, quantum mechanics computation usually gives 



the interfacial adhesion potential cohE  between the opposite surfaces of two atomic slabs [26, 
46]. When cohE  can be written as a polynomial as following: 
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where ia , ,...8,2=i , are constant. By substituting (5) into (4) and (3) one finds that the 
corrresponding interatomic potential yields: 
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Eq.(6) is the conventional Lennard-Jones Potential for a biatom molecule system; where σ  is the 
“collision diameter” that equals the separation when E  is zero; 0ε  is related to the “well depth”, 
i.e. the minimum of E  in the energy-separation ( rE, ) curve, which represents the equilibrium 
position: 
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Thus, the first term on the right hand of (6) characterizes the repulse force when a pair atoms 
come closely ( 0rr < ); whereas the second term governs the traction when they separate away 

from the equilibrium position ( 0rr > ). It should be noticed that the bi-atomic potential (6) is 
under the approximation to omit the effects of hyperfine structure of atoms, although it has been 
widely applied for the computations of large molecular system,  
  

Similarly to (1), the stress against sliding between two atomic surfaces, denoted as Tσ , is 

determined by the derivative of Peierls-Nabarro energy potential again stacking fault SE  [15, 20, 
54]: 
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where Tλ  is the relative sliding; USγ  is the Peierls-Nabarro energy barrier against dislocation. 
 
 
 
2.4.2 Geometrical discontinuities and grain boundary 
 



In Fig. 6 the two adjacent surfaces AS  and BS  are parallel to each other but no 

assumption about the details, for example, lattice’s orientations of AΩ  and BΩ . Grain boundary 
essentially is accumulated discontinuities in a periodic distribution of atomic array, as categorized 
in Fig. 7. The discontinuities, in conjunction with impurities segregations, may reduce the grain 
boundary adhesion energies. To demonstrate the concept, in this paper only the tilted grain 
boundary in polycrystalline bcc iron system, i.e. the case (a), is taken into account, focusing on 
the effects of phosphorous segregation on fracture toughness. Obviously, the adhesion potential at 
grain boundary, denoted as coh

gbE , will be different from the cohE  in bulk phase: 

 
  segragatetiltcohcoh

gb EEEE ∆−∆−=       (9) 

 
where tiltE∆  and segragateE∆  are the deductions of adhesion energy due to tilt and impurities 
segregation, respectively. The similar expression also applies to the USγ  in (8), denoted as US

gbγ . 

 
Fig. 7 Geometrical heterogeneities caused by grain boundary 

 
 
2.4.3 Impuritie segregation   

When chemical composition of a steel is known, an issue is to find how many the hazard 
elements, such as phosphorous and sulfur, segregated around grain boundaries. Let the symbol 

G
PΓ  to represent the weight percentage of phosphorous (P) segregated at grain boundary, the 

Langmuir-McLean model [17] gives an estimate of weight percentage of phosphorous at grain 
boundary: 

 

��
	



��
�



+

=

RT
G

expx1

1
0

G
P ∆

∆Γ        (10) 

   
where G

P∆Γ  is the increment of G
PΓ  during a heat treatment at a thermodynamic equilibrium 

state with the temperature T, 0G∆  is the chemical potential of the corresponding bulk phase 
which is about -78 kJ/mol-1 (at 300K) [6], R is the universal gas constant and x is to be calibrated 
by test.   
 
 The equation (10) indicates phosphorous segregation can be controlled through adjusting 
heat treatment, which also provides a way to estimate G

PΓ  according to heat treatment history. 



The experimental results of DANA Corp. have been used to calibrate the constant x. The range of 
G

PΓ  for the steel analyzed is below 10%. 
 
 
2.4.4 DFT[2,3] Computation  
 

In order to obtain coh
gbE  and US

gbγ  for establishing theoretical traction-separation law, the 

Density Function Theory[2,3] based quantum mechanics computations have been conducted, 
applying the full potential all electrons linear augmented plane wave (FLAPW) numerical codes 
[4, 44-46,71]. The procedure to set up periodic atomic supercells for this class of computations 
has been introduced in [4,70].  

 
Fig. 7 indicates the types of geometrical discontinuities at grain boundary are enormous. 

Two kinds of atomic cells to model the grain boundaries with two tilted angles θ : Σ1 ( )o0=θ  and 
Σ5 ( )o13.51=θ , are computed at ground state. The Σ1 grain boundary is the case that two adjacent 
grains have the same lattice’s orientation but with phosphorous segregation in-between, which is 
a degenerated case of low-angle grain boundaries. When this is no segregation, it becomes a bulk 
crystal. The primitive cell of Σ5 grain boundary is given by the plot on the left hand side of Fig. 
8, which is a typical high angle grain boundary. The corresponding distributions of electron 
charge density for the boundary cell and Σ5 surface, respectively, are plotted on the right hand 
side of the figure. Applying the procedure introduced in [26, 32, 20], the differences between 
them and those without phosphorous segregation define the segragateE∆  whereas the difference 
between non-segregation Σ1 and Σ5 define the tiltE∆  caused by Σ5 tilt in (9). Grain boundaries 
with other tilted angles less than ( )o13.51=θ  are interpolated between zero and the tiltE∆ of Σ5. 
The twin boundary is not taken into account for the intergranular fracture studied.  
 

The computed adhesion energies for bulk bcc iron and for the Σ1 grain boundary with 
phosphorous segregation are plotted in Fig. 9a, by which the discretized numerical data were 
fitted into polynomials (5-7). As expected, a remarkable drop in adhesion energy can be seen 
when P segregate presents.  For the Σ5 boundary tiltE∆ , the reduction of adhesion energy, is 
about 18% when 0=ΓG

P . Considering grain boundary represents a “discontinuity” of periodic 
array of atoms, the reasons that cause the drop of adhesion energy can be: (i) the segregated 
interstitial phosphorous atoms weaken metallic Fe-Fe bonds; (ii) the tilted boundary is actually an 
array of empty sites that enlarges the interatomic distance between the atoms from adjacent 
grains; (iii) segregated P atoms or titled boundary breaks the periodicity in bulk phase, which 
alternates the ferromagnetic alignment of bcc iron and, thus, induces localized antiferromagnetic-
like spin-polarization ( see Fig. 9b );  it is well-known that the iron fcc crystal is 
antiferromagnetic, which is with less stability as compared with bcc iron, see Appendix I. Table 
III lists the computed values of cohE , tiltE∆  and segragateE∆ . Results of other segregations or 
grain boundary tilt angles can be found, e.g. in [6,10,11,31,32]. According to the computation in 
[20]: 43.0≈USγ (J/M2). At grain boundary the relation ( )gb

coh
gbUS

gb
US EEγγ =  is applied in this 

analysis. 
 
 



 
Fig. 8 The supercell of 5Σ  bcc iron grain boundary with phosphorous segregate (a) and charge 

density in the middle layer of the cell (b, c); where the red ball in (a) and the small dark-gray ball 
in (b) and (c) are Phosphorous atoms whereas the others are iron atoms; a bcc cell is illustrated in 

in the supercell of (a). The misorientation defined by Fig. 7 is zero in these computations. 
 

  
    (a) grain boundary adhesion energies     (b) spin-charge density around Σ5 grain boundary  

without phosphorous segregation; it demonstrates a 
semi-periodic distribution in vertical direction which is 
somewhat like that presented in anti-ferromegnetic 
fcc; from the horizontal periodicity one sees that the 
computation is performed using the cell of Fig. 8(a). 
 

Fig. 9. Computation of the grain boundary adhesion with phosphorous segregation 



 
 
Table III Grain boundary adhesion energy for BCC iron (J/M2) 

cohE  
 

tiltE∆ (�1 ) 

 0=ΓG
P  

tiltE∆ (�5 ) 

0=ΓG
P  

segragateE∆ (�1 )  

%6.4=ΓG
P  

segragateE∆ (�1 )  

%4.9=ΓG
P   

4.97 0 1.67 0.94 1.61 
where P: phosphorous; G

PΓ : weight percentage of P segregation 
 
 
2.5 A Hierarchical Multi-Scale Procedure 

A major challenge for the object studied is to bridge the sub-atomic computation with 
micro and macro analysis, which requires a hierarchical scheme to integrate the kinetics from 
angstroms to centimeters while highlighting the dominant mechanisms. This is somewhat 
different from many recently developed successful methods, for examples, [57-63]. In order to 
predict the steel’s fracture toughness, the following two steps are vital important: (I) implement 
the results of quantum mechanical computation obtained in the previous subsection into the 
polycrystalline system; (II) to embed the information of grain-sized analysis into the inch-sized 
fracture toughness specimen, so as to compute the macro-scale parameters that characterizes 
material’s fracture.    
 
2.5.1 Sub-Atomic to Up-atomic   

 
The step I mentioned above requires to bridge the sub-atomic quantum physics with up-

atomic continuum analysis. As plotted in the flow chart of Fig. 5, the Moving Particle Finite 
Element Method (MPFEM) is employed for this purpose. It contains the methodologies in two 
perspectives: finite element and particle method. For sub-atomic to up-atomic bridging, the 
‘Particle Dynamics’, introduced in [20,28], is applied to the step I. The idea of this approach is to 
represent an atomic system as a particle system through lumping several atoms into a super-atom, 
termed “particle”, while preserving the essential properties of the atomic system via a proposed 
“equivalent stiffness rule”.  This rule requires that the particle system has the same periodic 
structure and stiffness as the original system but with a larger inter-particle spacing that is 
determined according to the scale of interest, see Figs. 10a,b. The sub-atomic physics, which may 
dominate the mechanical behavior at up-atomic scales, is preserved through transforming the 
inter-atomic potential into an inter-particle potential by the following way: 

 
Assuming atomE  to be the interatomic potential, like (6), for the system in Fig. 10a., 

when it is suffering a deformation, for example, 0a  becomes 1a ; accordingly 11 NaRR =→  in 

the particle system of Fig. 10b. This deformation can be represented by a uniform strain field ijε  

for both systems. The corresponding stress tensor atom
ijσ and stiffness tensor atom

ijklC  of the atomic 

system yield [26, 56]: 
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where ρ is density and the dummy summation rule is applied. The second term on the right hand 
side of (11a) is corresponding to finite strain [56], which can be omitted when deformation is 
small. 
 

 Similarly, for the particle system in Fig. 10b with an inter-particle potential ParticleE : 
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and 
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The “equivalent stiffness rule” requires: 
 
  
 atom

ijkl
Particle
ijkl CC =         (13) 

 
which leads to 
 
 atom

ij
Particle
ij σσ =         (14) 

 
The equality (13) provides a group of conditions to determine ParticleE  that gives the same 
stresses for both systems, as confirmed by (14). However, the computational effort by Particle 
Dynamics is reduced to about 1/Nm of that by atomic system for a m-dimensional case; where N 
defines the size of the particle, see Fig. 10b, and m=1,2,3. An analysis of the bcc iron lattice with 
grain boundary is given in [20, 28].  
 



 
Fig. 10 The “Particle Dynamics” method [20] that transfers the atomic system (a) into the particle 
system (b) through segregating the atoms within the cell of dimension R into a particle whereas 

an “equal stiffness rule” is imposed to ensure the two systems having the same elastic properties. 
 
 According to the procedure introduced above, one can find that as compared with other 
successful multiscale methods, e.g. the Quasicontinuum [60, 61], the novelty of the Particle 
Dynamics lies in the following two perspectives: 
 

- The Particle Dynamics (PD) is a “hierarchically-structured” method to transfer an 
atomic system into a particle network that keeps the same lattice structure as the original; 
by contrast, in the methods of [58, 60,61] a finite element contains a set of atoms and the 
finite element net work may have the slip motion that differs from the particle network. 
-  The “equivalent stiffness rule” of Particle Dynamics provides a unique way to 
reproduce an inter-atomic interactions as an inter-particle interaction while preserve the 
origin of mechanical interatomic interaction at mesoscopic level.   

 
Applying this approach, the quantum mechanical computation-based interfacial 

adhesions are applied to describe the grain boundary traction-separation relation for the 
polycrystalline system that plotted in the second column from right in Fig. 4, where each grain is 
a crystal made of “particles” which are segregations of atoms. The traction-separation relation has 
been implemented into a group of “cohesive elements” that connect each grain boundary surfaces 
pair, e.g. the AB in Fig. 11a. On other hand, all grains are treated as bcc crystals with the same 
[001] direction perpendicular to the two-dimensional plane but randomly pre-assigned in-plane 
orientation. Each particle in a grain defines a “node”, the connections among these nodes form 
small finite elements that partition the grain. The finite element is with the average size about one 
order smaller than average grain size, as illustrated in the middle box of the second column from 
right in Fig. 4. The finite elements obey the constitutive relation of crystal plasticity with Taylor’s 



hardening (isotropic hardening) [18]; which is governed by the effective stress-strain relation that 
is calibrated according to the quantum mechanics analysis of bulk iron phase through the 
“Particle Dynamics” method, as described in [28]. The Moving Particle Finite Element method 
[25,27,30], which integrates all atomic segregates into a polycrystalline network that combines 
the “cohesive elements” and grain finite elements, has been applied for the micro-scale 
computation.  
 
 

 
 
Fig. 11 MPFEM cohesive elements for the computations of grain boundary separation and 
sliding; (a) the cohesive element AB connects two adjacent grains that are descritized by the finite 
elements associated with points A and B; where SA is the “master surface” enhanced to the node A 
in numerical analysis, defining the normal separation Nλ  and relative sliding Sλ , respectively; 
thus, the grain boundary surface associated with node B is defined as “slaver surface”; (b) at triple 
junction the three cohesive elements, i.e. AB, AA’, A’B, and corresponding master-slaver surfaces 
pair, are required in analysis. Moving Finite Element Method [25, 27, 30] is applied to integrate 
cohesive elements and grains. 
 
 
2.5.2 Micro to Macro Scale 
 

As mentioned in the previous subsection, the size of finite element inside a grain is in the 
order of micron; for a grain by grain micro-structured two-dimensional computation of a ASTM 
standard CT specimen, a model with about 6.25x1011 finite elements (1017 elements for 3D) is 
required. Obviously, more effective scheme will be preferred since the damage caused by 
intergranular cracking is limited only within the close vicinity of the crack tip; the rest part of the 
specimen can be described by well-developed theory of isotropic and uniform plasticity; for the 
latter, finite element with the size of millimeter is sufficient.   
 

In this analysis a scheme is developed by which the CT specimen is divided into two 
parts: a small chunk of material surround the crack tip which is modeled by the polycrystalline 
microstructure; an example of this crack tip zone, denoted as tΩ , is plotted on the right upper 

corner of Fig. 12. The rest part of the specimen, denoted as Ω , is modeled by the continuum J2 
flow plasticity theory using regular finite element. The external load applied to the specimen is 



transferred into the crack tip through the continuity conditions of traction T and displacement tu  

on the shared boundary Σ . The detail of the three-dimensional meshes around Σ  in Ω  is given 
by Fig. 12, which shows the adoption from the relatively small finite elements near Σ  to the 
coarse elements away from it. T and tu  at the Σ  on the middle section of the 3D block define 

the plane strain boundary condition on the Σ  of tΩ . This is similar to the “boundary layer 
method”, e.g., in [37], by which the stresses of asymptotic analytical solution, such as mode-I K-
field [39], is applied to the outer boundary of crack tip zone.  

 

 
Fig. 12 The developed scheme divides a standard specimen into two parts: the polycrystalline 
slab tΩ  containing, for example, a sharp crack tip, as plotted on the right upper corner; which  

“shakes” hands to the rest of the specimen through the continuities of displacement and J-integral 
on the boundary Σ  

 
However, when massive microscale intergranular cracks occur within tΩ , the stresses on  

Σ  may decrease due to material’s softening while tu  still increases. In other word, the traction 

T  alone does not uniquely determine the deformation field inside tΩ . By contrast, the tu  on Σ  
is monotonic when external load in the form of displacement increases monotonically. Generally 
it is very difficult to satisfy the both stress and displacement continuities simultaneously by 
boundary layer method; instead, a J-integral[13] based “shake hand” scheme is developed which 
requires the satisfaction of the continuous conditions of displacement and J-integral on Σ ; the 
latter represents the energy that flows into the crack tip.  

 
This “shake hand” scheme includes three computations: beside the computation of the 

part Ω  and that of the polycrystalline system tΩ  with intergranular cracking, respectively, the 

third computation of the entire specimen ( Ω+Ω t ) is conducted by which no intergranular 

cracking in tΩ , so all material are obeying the same plasticity law. The quantities associated with 

these three computations are distinguished in turn by the superscriptions Ω , tΩ , and Ω+Ω t . 



Then, for the two cases without intergranular cracking, the corresponding J-integral, applied load 
P, and CMOD (crack mouth opening displacement) U are ΩΩΩ UPJ ,,  and 

Ω+ΩΩ+ΩΩ+Ω ttt UPJ ,, , respectively. The reason for the third computation is to find the external 

load ( t
damagePΩ ) and CMOD ( t

damageU Ω ) corresponding to the computation of tΩ  with intergranular 

cracking induced damage.  
 
The displacement on Σ  obtained from the third computation, denoted as  Ω+Ωt

tu , is used 

as the boundary condition imposed on Σ  for the computation of the polycrystalline system tΩ  

with intergranular cracking, which leads to the corresponding J-integrals tJ Ω  on Σ . On other 

hand, a reference crack tip opening displacements (CTOD), CTODu , defined as the integral over 

Σ  of the vertical component of tu  with respect to dx and then divided by the length of the 
projection of Σ  on the horizontal coordinate x, is recorded for all three computations. For a given 

CTODu : Ω+ΩtP  > ΩP ,  ΩΩ+Ω ≅ UU t  , and Ω+ΩtJ  > tJ Ω > ΩJ . So t
damagePΩ , the corresponding 

external load to the computation of tΩ  with intergranular cracking, is obtained through the 
following interpolation: 
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which is the load that is actually applied to the specimen. This procedure is under the 
approximation that the displacement field in Ω  changes monotonically when the CT specimen is 
under a monotonic load in the type of load-line displacement. This is a reasonable approximation 
for small-scale yielding.  

Hence, the applied load to the CT specimen induces macro-scale crack mouth opening 
displacement (CMOD), which links to the micro-scale computation on the polycrystalline slab 

tΩ  through the shared displacement boundary condition and consistency in J-integrals. This two-
level computational scheme reproduces the processes of macro-scale crack growth-induced 
fracture based on the simulation of the damage evolution caused by grains, grain boundaries’ 
sliding and separation in the local area surround the crack tip and the deformation in entire 
specimen; which enables the quantitative predictions of the relationships among fracture 
toughness, applied load, grain, grain size, grain boundary adhesion, and the associated sub-atomic 
physics, as illustrated by the flow chart in Fig. 5.  

 
3. RESULTS AND DISSCUSION   
 

Fig. 13 is a set of snap-shots of the evolutions of stress field in the damage zone tΩ  
surrounding a blunted crack tip of the CT specimen, when applied load increases and the 
corresponding grain boundary separation occurs in tΩ . Fig. 14 gives the comparison between the 
simulated load-CMOD relation and experimental results. Fig. 15 shows the computed fracture 
toughness according to ASTM E399 when the content of phosphorous varies. As expected, higher 
content of phosphorous leads to lower fracture toughness within the range computed.   



 

 
Fig. 13 Intergranual fracture – MPFEM microscale simulation for the case with blunted crack tip 

 
Fig. 14 The computed Load-CMOD curves for the specimens with different weight percentages 

of phosphorous 



 
Fig. 15 The relationship between fracture toughness and the content of phosphorous, 

computational results , by improving grain ductility, the curve may move up, as indicated by the 
arrow A. 

 
It is no doubt that phosphorous segregates will embrittle metal. However, by comparing 

the drop in fracture toughness plotted in Fig. 15 and the deduction of adhesion energy plotted in 
Fig. 9a when phosphorous increases, the changes in the former is much more significant than that 
in the latter. This can be explained by the simulations in Fig. 13, which shows a severe stress 
concentration at triple-junctions and the junctions of multi-grain boundaries when the average 
amplitude of the stress field is moderate. Thus, each junctions becomes a source of microscale-
cracking, which causes decohesion along grain boundaries. The accumulation of these 
microscale-cracks forms a damage zone ahead a macro-scaled crack tip. The evolution of this 
damage zone leads to the subsequent macroscale crack growth. Consider a material is a system, 
an intergranual fracture essentially is the result of the interaction between grain boundary 
separation and deformation of grains. Therefore, removing the stress concentration at junctions of 
grain boundaries and increasing grain boundary adhesion are the two equally important goals for 
improving the mechanical properties of the steel. The study conducted inspires the ideas to 
achieve the first goal by increasing grain ductility through alloy additions, e.g. Ni, and phase 
constituents, e.g. with optimized ratio of bainite and retard austenite; while to improve grain 
boundary properties through the following two ways: (i) adding grain boundary clue elements 
such as B and Nb; which also have the function to pin grain boundary so reduce grain’s size; (ii) 
alloying with appropriated processing to promote the formations of (M, P)xCy  and (M, S)xCy 
compounds which extract P and S out from grain boundaries.  
 
 
4. Conclusions and Suggestions 

From the viewpoint of mechanical analysis, this paper reports an effect to understand the 
intergranular fracture phenomenon in polycrystalline system based on the underlying fundamental 
physics. A hierarchical, multi-scale procedure has been developed through quantitatively 
integrating the information obtained from a series of density function theory-based computations 
to the corresponding micro and macro-scale particle-finite element analysis. This procedure has 
been applied to an analysis of AISI 8822 carburized steel case to explore the possibilities of 



improving toughness while sustaining desirable strength and wear resistance. This analysis 
concludes that for the studied polycrystalline system consisting of grains with high hardness and 
strength, an intergranular fracture is governed by the interaction of grain boundary adhesion and 
stress concentration at triple and other multiple grain boundaries’ junctions. Hence, optimized 
mechanical properties for this class of steels can be achieved through the following conventional 
ways: 

 
- Refine grain size: although finer grains may be detrimental to toughness, however, 
when the average size is not less than 102 nm, smaller grains may reduce the local 
resistance against dislocation motion around grain boundaries-junction while increase the 
energy barriers against large scale yielding due to increased zigzag in slipping paths, 
which elevates the strength of an alloy according to conventional Hall-Petch relation. 
Also, finer grains enlarge the total area of grain boundaries which reduces average 
impurities segregation per unit area of grain boundary. Hence, the trade-off of these 
factors may finally lead to a positive effect to the system.  
 
- Alloying and processing to simultaneously improve grain boundary adhesion and 
grain’s ductility: high grain’s ductility reduces the stress concentration at triple-junctions; 
a summation of these two mechanisms may result in the transition from intergranular 
fracture to trangranular fracture.   

 
Appendix 
  In the following text boldface symbol denote tensor, the order of which is indicated by 
the context.  Plain symbols denote scalars or a component of a tensor when a subscript is 
attached.  Repeated indices are summed.  For two order tensors a and b, [ ]ija=a , [ ]ijb=b ; then 

[ ]ji
T a=a , [ ]kjik ba=⋅ba , [ ]ijijba=b:a , and [ ]klijba=ab . 

I Feromagnetic and Antiferromagnetic phases of Iron [65] 

 
(a)      (b) 

Fig. A1: (a) Comparison of the ground state ferromagnetic and antiferromagnetic 
system energies of unit atomic cell when it transforms from bcc to fcc crystal along “Bain 
path”; where η  is the order parameter to characterized the lattice constant ( :0=η fcc, 

:1=η bcc); so the fcc crystal has antiferromagnetic structure with higher ground state 
energy than bcc. (b) The magnetization moment per atom when the lattice structure varies 
along Bain path.  



 

 
Fig. A2: Spin-charge density distributions for bulk fcc (left) and bcc (right). 

 
 

 
 
II: About the “Moving Particle Finite Element Method” (MPFEM) [25, 27, 30]                           

The network that connects all particles obtained from “Particle Dynamics”[20] forms a 
finite element mesh, which is the same as the mesh that represents a discretized body in solid 
mechanics finite element analysis [50-53]. Fig. A3(a) shows an example of such a solid body Ω  
with the boundary tΩ∂  of force boundary condition (natural boundary condition) and uΩ∂ of 
displacement boundary condition(essential boundary condition). It has been partitioned into 9 
triangle elements in (b). Each corner of a triangle element is a particle that is termed “node” in 
finite element analysis. In the ith element, the strain incremental tensor inside a finite element, 
denoted as �∆ , is expressed as the function of the displacement increments vector iu∆  at all 
nodes associated with this element: 

 

ii uB� ∆⋅=∆         (b1) 
 
where the rule of dummy summation for the repeated index i applies; iB  is the “differential 
matrix”, determined by displacement-strain relation (e.g. Cauchy geometric relation) and the 
interpolation scheme (shape function) of the finite element.  
 



 
Fig. A3: The conception of MPFEM applied to grain boundary with cohesive element xx’; 

 
 

Assuming that the elements 321 ,, EEE  belong to one grain while 654 ,, EEE  belong to 
another grain, then the node between two grains actually is a “cohesive element” that connects the 
particles from two adjacent grains’ surfaces; for example, the x and 'x  in Fig. A3(c). The 
“Moving Particle Finite Element Method” [25,27,30] is able to solve the equilibrium condition at 
nodes through the virtual work principle.  

 
Considering the node x in the case of Fig. A3(b), the virtual work principle-based 

equilibrium condition at this node implies that the work done by a force xF∆  imposed on the 

nodal x , which is the product of xF∆  and a virtual nodal displacement xu∆  at this node, equals 

the summation of the strain energies caused by xu∆  in all elements shared the node x:  
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where Vi is the volume of the ith element; [[[[ ]]]]T,0�uu� xi ====  is a vector that contains the 
displacement increments at all nodes associated with the elements adjacent to the node x; but by 
the virtual work principle it is assumed all these nodal displacements are zero except xu∆ ; �∆ is 

the stress increment tensor that is correlated to �∆  through the constitutive law: 
 

�C� t ∆=∆ :          (b3) 
 
where tC  is the tangential stiffness matrix of the bulk phase, which is a fourth order tensor. 
 
 In MPFEM there is no restriction to the type of the elements in the nodal equilibrium 
condition (b2). For the case in Fig. A3(c) the node x is at a grain boundary formed by the upper 
edges of the triangle elements E1 and E3. The developed cohesive element xx’ establishes the 
connection between the two sides of the opposite grains. Similar to (b2), the equilibrium 
condition at the node x can be expressed as the following summation. 
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where decoh

xF∆  and decoh
xu∆  are the force and elongation vector of the cohesive element; when 

there is no displacement on the other end of the cohesive element:  
 

 [ ]TSNx
decoh
x λλ ,=∆=∆ uu .        (b5) 

 
where Nλ  and Sλ  are the normal and tangential separation in (1) and (8), respectively. 
 
 When all other nodes are fix but node x has the displacement xu∆ , one can remove xu∆  
from the both sides of (b4), which becomes the equilibrium condition at this node in matrix form: 
 
 xx uKF ∆⋅=∆ ~

          (b6)  
 

where decoht
~ KKK ++++==== ; the grain matrix tangential stiffness tK  and decohesion stiffness 

decohK  are defined as below: 
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