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Abstract 
In material’s selection and design of magnetic transmission system or MEM/NEM device, a 
crucial issue is to identify the failure mechanism of a conductor component with defects or a 
contact between conductors under a combination of electrical, magnetic, and mechanical loads. 
When externally applied mechanical load is very small or vanishes, electric-breakdown and 
localized melting, e.g. at a crack tip, caused by resistance induced energy dissipation, are the two 
major processes that may lead to failure. In order to quantitatively identify the critical conditions 
for these two competing mechanisms, close-formed mean field solutions of conductor plate with 
defect in the form of crack have been obtained through solving Maxwell’s equations, momentum 
conservation, and heat conduction equation. For two dimensional problems, a general solution of 
the magnetic field associated with in-plane electrical current has been derived using conjugate 
function. Therefore the corresponding Lorentz’ force and stress intensity factor can be computed 
analytically; which have remarkable effects on processes of material’s failure. Under the 
framework of the semi-classical theory of metals, mean free path of electron flow and the 
interactions between electron and impurities have also been discussed, where the former defines 
a length parameter to link macroscale analysis with underlying atomistic physics through 
electrical conductivity. The obtained mean field solutions, in conjunction with Paschen law, lead 
to the solution of the threshold of applied electrical load at breakdown and associated energy 
dissipation; the latter represents the “fracture toughness” under this critical condition. These 
solutions also indicate that there three patterns of electrical breakdown regarding the location 
where it happens, depending upon crack tip geometry, material’s properties, and the level of 
applied mechanical load. The condition for crack tip breakdown, the distance to crack when 
breakdown occurs away from a crack tip, and the threshold of applied electrical load have been 
obtained analytically. By comparing the energy dissipations of breakdown and crack tip melting, 
a “material’s constant” has been derived based on a proposed circuit model to distinguish these 
two competing mechanisms, which defines a criterion to predict the dominating process for a 
given conductor. 
 
Key words: Lorentz force, magnetic, electric-breakdown, defect, crack, crack growth, failure 
mechanism, stress intensity factor, fracture toughness, dislocation, impurity, multi-physics, 
length scale, Maxwell equation. 
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1. Introduction 
The theory of electrodynamics indicates that on a concave solid surface, electric-

breakdown may occur if the distance between two adjacent surfaces, such as the two edges of a 
crack tip, is smaller than a certain critical value when an electric field is applied [1-3]. For a 
dielectric medium containing an elliptical inclusion with different dielectric coefficient, a 
quantitative analysis was performed in [4] to obtain critical amplitude of electric field remotely 
applied.   

 
A defect in a solid conductor is a geometric discontinuity, which can be an ellipsoid 

cavity or a crack containing either a dielectric phase or another conduct with different 
conductivity. Although a crack is the extreme case of an ellipsoid, a sharp crack with very small 
radius at tip causes extremely high energy concentration [1-2] that highlights the underlying 
mechanisms from different scales at localized area, by which the enhanced phenomena may not 
be fully covered by ellipsoid’s solution. Experimental evidences indicate that a cracking-induced 
material’s failure in a conductor under electromagnetic loading is a process with complicated 
underlying mechanisms. Fig. 1 shows an observation of crack growth and melting at the crack tip 
under a pulsing electric load [5]. For such a configuration, when a magnetic field simultaneously 
presents along the direction not parallel to electric current, the corresponding Lorentz force can 
be remarkably high which separates the opposite crack surfaces. A pulse electrical potential 
induced skin effect may ionize the surfaces, leading to high electric dipole density near the crack 
tip with repulsive London’s force. The combination of London and Lorentz forces, in 
conjunction with the possible surface charge-induced Columon’s force, may produce a very high 
stress-intensity factor that drives crack to grow. On other hand, an electric-breakdown or high 
amplitude of electric current is accompanied with significant energy dissipation, which causes 
high temperature gradient within localized area where the material will lose its resistance against 
fracture due to thermal softening and melting [5, 6]. Eventually this multi-physics process will 
finally end by crack propagation and subsequent structural failure. Hence, it is crucial to obtain 
the critical conditions of melting, electric-breakdown, and crack growth in such a defected 
conductor, so as to ensure enough safety margin of applied load in machines, devices, and 
materials’ designs.   

 
Fig. 1 An observation of the melted crack tip after electric-breakdown [5] 
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By tracking literatures, e.g. [7-10, 19, 48, 49, 52, 53, 58-65], one can find increasing 

interests and accumulated research reports with many successful applications for the problems 
coupling mechanical and electromagnetic loads, when electric or magnetic field-induced 
displacement causes significant mechanical deformation. A model theory of stress-induced 
magnetization for ferromagnetic materials has been developed in [10]. The interaction between 
magnetic hysteresis and stress field has been studied in [58,59]. In continuum theory of 
piezoelectric and piezomagnetic matters, the mechanical response is usually mathematically 
represented through constitutive law, e.g. strain tensor becomes a function of both mechanical 
stress and generalized electric and magnetic “stresses”; see e.g. [61,63]. When this kind of 
constitutive law is linear, closed-formed theoretical solutions and detailed analysis have been 
conducted for various materials with cracked-geometries [11-15, 19, 54, 61-66]. 

 
The paper studies the conditions of electric-breakdown and melting of linear elastic 

conductor with crack under electrical and magnetic load; whereby the challenges lie in its multi-
physics nature and the nonlinearity associated with Lorentz force, although linear 
approximations are made for each individual mechanism. This is because Lorentz force is the 
cross product of electric and magnetic fields so the corresponding mechanical equilibrium 
condition (moment conservation) is nonlinear for linear elastic solid. When dissipation-induced 
melting occurs, the effect of solid-liquid phase transformation has to be taken into account. In 
many cases these nonlinearities can be ignorable. However, when geometric discontinuities, such 
as cracks, present, the effect of this coupling-induced nonlinear force may become crucial. 

 
The analysis in this paper is presumed under static electrical load. The obtained results 

may also be suitable for dynamic problems if the corresponding deformation scale, e.g. crack 
opening displacement, is much smaller than the involved time-dependent length scales such as 
the wave length of the involved electromagnetic wave [2]. Also, as indicated in [1], when the 
electric conductivity and dielectric coefficient are constants, the solution structure of static 
electric field for conductors is identical to that for dielectric materials. This is because the both 
cases obey the same Laplace equation except at the interface between different materials. Further 
more, according to the semi-classical theory of metals [16], the macro-scale conductivity is a 
function of mean free path of electron, which defines a length parameter to link mean field 
analysis, e.g. Maxwell’s equation’s solutions, to the atomistic physics such as dislocation 
mechanisms. By presuming diluted-distributed point defects in the form of screw dislocation and 
misfit solution atoms, the asymptotic expression of this length parameter has been studied. It also 
defines the lower bound for the applicability of obtained mean-field solutions.  

 
This paper is organized as following: next section introduces the governing equations and 

boundary conditions for the problems to be studied in the framework of macroscopic mean-field 
theories. Section III introduce a series of two-dimensional solutions which includes three parts: a 
general solution of magnetic field associated with any electrical field; electrical field solutions 
for crack and hole problems with and without breakdown; and asymptotic solution of Lorentz 
force induced stress intensity factor. In Sections IV an asymptotic temperature field solution 
including a melting zone around a crack tip has also been derived By comparing energy 
dissipations caused by melting and breakdown, a capacitance-resistance circuit model is 
proposed to distinguish dominant mechanism. In section V this circuit model, in conjunction 
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with Paschen’s law, leads to the predictions of a critical condition of breakdown and associated 
energy dissipation; the former defines a “threshold” of applied electric field; the latter provides 
an estimate of the material’s “fracture toughness” against breakdown-induced failure. Also, 
based on the framework of the semiclassical theory of conducting metals, the interactions 
between electron transport and three kinds of diluted impurities have been studied, by which an 
asymptotic solution of electron free path, the length parameter to link macroscopic solutions and 
underlying mechanisms, has been obtained. Finally a dimensionless material constant, defined as 
the ratio between the energy dissipations of breakdown and melting, is suggested based on the 
obtained analytical solutions; which can be used to predict the dominant failure mechanism of 
conduct under electrical magnetic load for a given conductor.   

 
Standard notation is used throughout. The boldface symbols denote tensors; the order of a 

tensor is indicated by the context. Plain symbols denote scalars or components of a tensor when a 
subscript is attached. Symbol 3z  represents the coordinate perpendicular to the { }yx,  plane in a 
three-dimensional Cartesian system { }3,, zyx , whereas “z” is a complex variable iyxz +=  with 

1−=i . For a complex function ( ) ( ) ( )yxivyxuzF ,, += , its conjugate function 
( ) ( ) ( )yxivyxuzF ,, −= . The SI unit is used throughout the text except otherwise specified.  

 
       
2. Governing Equations, Boundary Conditions and Approximations 
 

Figure 2 is a schematic showing the problem to be analyzed, where a conductor with 
electric conductivity Cσ  contains an ellipsoid inclusion with dielectric coefficient 1ε . In this 
diagram, µ and v  are Young’s module and Possion’s ratio, respectively; symbols E, J, D, H, B 
denote the macroscopic electric field, current density, electric displacement, macroscopic 
magnetic field, and magnetic induction field. All symbols and variables associated with the 
ellipsoid inclusion are denoted by subscription “1”. 
 
2.1 Lorentz Force, Maxwell’s Equations, Moment Conservation and Heat Conduction 

The primary governing equation for the problems studied is the momentum conservation 
(force equilibrium condition) at each material point whereby the Lorentz force presents as body 
force terms on the right hand side:  

 

 (((( ))))BvEu
� ××××++++−−−−

∂∂∂∂
∂∂∂∂====⋅⋅⋅⋅∇∇∇∇ qem

t
ρρ

2

2
      (1) 

 
where ∇  is differential gradient operator, �  is stress tensor,  u is deformation displacement 
tensor; eρ  and mρ  are the free charge density and mess density per unit volume, respectively; qv  

is the velocity of the electric charge so Jv =qeρ  is current density; E and B are the macroscopic 
electric field and magnetic induction field, respectively, determined by Maxwell Equations. 

Hence, on the right hand side of (1) the term “ 2

2

tm ∂
∂− uρ ” represents inertia, the term “ Eeρ ”is 

electrical force whereas  the term BJBv ×=×qeρ  is magnetic force. 
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Presently only the time-independent problems are studied whereas the frequency-

dependent problem will be discussed in following research reports. Under this condition, the 
Maxwell Equations to be solved are these as below: 
 
I. 0=⋅∇ B            
II. 0=×∇ E            
III. Eρ=⋅∇ D          (2) 
IV. JH =×∇            
 
where Eρ  is the density of charge sources. In this study, 0=Eρ , and the following linearized 
constitutive relations apply [1, 2]: 
 

ED ε=            (3a) 
HB Mµ=           (3b) 

 
, and in a conductive material: 
 
 qevJ ρ=          (4) 
 
with the Ohm’s Law at each material point:    

 
EJ Cσ=          (5) 

 
In (3a,b) and (5), the dielectric coefficient ε , magnetic permeability Mµ , and electric 
conductivity Cσ  are assumed to be constants. In this analysis, only the magnetic field induced 
by electric field is taken into account. Under this condition, the coupling of magnetic field on 
electric field, e.g. the Hall effect, is about 3 to 4 orders smaller than the non-coupling parts [11] 
and is omitted.  
 
Remark: The constitutive relations between the pair ( )ED,  and ( )HB,  are nonlinear for most 
materials [1, 2, 16]; the dielectric coefficient and magnetic permeability are tensors in general. 
The relations (3a,b) imply the approximations of isotropic magnetic electrical materials leaving 
out the effects of (i) magnetic hysteresis; (ii) the coupling between magnetic and electrical fields 
(Hall effect); (iii) magnetic and the electrical polarizations on conductor’s surfaces. The studies 
about interaction between magnetic hysteresis and mechanical stress field can be found, e.g. in  
[58, 59,67]. Introductions about Hall effect can be found, e.g. in [16]. 
 

For the linear elastic solid studied in this paper, the stress tensor, � , and the displacement 
field, u, are correlated each other through the linear Hook’s law under the approximation of 
small strain: 
 
 eC� :e=    uue T∇+∇=     (6) 
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where eC  is the elastic stiffness tensor. 
 
 Heat conduction and the associated temperature field, T, is governed by Fock’s law: 
 
 02 =+∇ Hh Tk ρ         (7) 
 
where Hρ  is a heat source and hk  the thermal conductivity. Heat convection through the surface 
is neglected. In this analysis, the Wiedemann-Franz relation applies [16]: 
 

 
2

2
3

�
�

�
�
�

�=
e

k
Tk BC

h σ         (8) 

 
where Bk  is the Boltzman’s constant, and CoulumbEe   1960319.1 −=  which is the charge 
carried by an electron. (8) gives the relationship between thermal conductivity hk  and electric 

conductivity Cσ . 
 
 
2.2 Boundary Conditions 

Fig. 2 illustrates a two-body system where a large conductor contains a defect, e.g. an 
ellipsoid. As a convention, one may define surface change density Sρ  and surface current 
density vector K at the interface between the two materials.  As a convention, the outer normal of 
interface surface always points to the inclusion, as illustrated in Fig. 2. The corresponding 
current and electromagnetic boundary conditions at the interface between the matrix and the 
defect read [1,2]: 

 
 ( ) Sρ=−⋅ 1JJn         (9a) 
 
 ( ) 01 =−⋅ HHn , ( ) KHHn =−× 1      (9b) 
 
where the subscription “1” denotes the quantities in the defect side. Assuming a traction T on a 
boundary segment denoted as tΓ , the corresponding force boundary condition reads: 
 
 �nT ⋅=  on  tΓ         (9c) 
      
 When a displacement field u  is given on a boundary segment denoted as uΓ , the corresponding 
displacement boundary condition reads: 
 
 uu =   on  uΓ         (9d) 
  
On the interface between the matrix and the defect: 
 
 ( ) 01 =−⋅ ��n , 0uu =− 1       (9c) 
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Fig. 2  A conducting solid body containing a dielectric cavity, where v,, µε  are the dielectric 

coefficient, Young’s module and Possion’s ratio, respectively. The corresponding interfacial and 
boundary conditions are described by (9a-9d). 

 
 
 
2.3 Two-dimensional approximations: Plane Strain and Plane Stress 

Field solutions of a conductor, such as the matrix material in Fig. 2 under an applied 
electric field at remote, are to be studied under the two-dimensional “plane stress” and “plane 
strain” approximations, which can be considered as the two extreme cases of three-dimensional 
problem, explained as follows:   
 
(1) Plane-strain condition: a plate contains one or more cylinder ellipsoid(s) with their axes 
perpendicular to the { }yx,  plane that defines the plate; External applied electrical, magnetic, 
mechanical force, and displacement fields may act on the plate’s boundaries; all these external 
fields are independent of 3z , the coordinate perpendicular to plate; they have only the 
components within { }yx,  plane except magnetic field. When the thickness of the plate is much 
greater than the long axis length of these ellipsoids, the middle part along the plate thickness is 
under the “plane strain” condition. In addition to the governing equations (1)-(10), “plane strain” 
condition is mathematically described by:   

 
033 == EJ ;  03333 === yx eee      (10a) 

 
where 3J  and 3E , respectively, are the components of current and electric field along 3z  
direction; 3ie  are the components of strain tensor defined by (6). In (10a) and the following 
analysis, both subscripts “ 3z ” and “3” stand for the variables associated with coordinate 3z  
perpendicular to the { }yx,  plane. 
 

Electromagnetic 
field 
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(2) Plane-stress condition: all requirements for the plane strain are satisfied except the thickness 
of the plate which is so thin that, instead of (10a), the following conditions are met: 

 
033 == EJ ;  03333 === yx σσσ      (10b) 

 
where 3iσ  are the components of stress tensor. Additionally, it is assumed that the first-order 
derivatives of electric and magnetic fields along 3z  direction are zero within the plate and no 
surface concentration and polarization for any field variables except strain; hence, in the plate the 
following relation is applicable: 
 
 0

3
0

3 HH MM µµ =         (10c) 
 
where 0

Mµ   and 0
3H  are the magnetic permeability in the space out of the plate and the 

corresponding magnetic field, respectively.  
 

Under plane stress or plane strain approximation, substituting (10a) or (10b) into 
Maxwell’s equation I and IV of (2): 

 

0=
∂

∂
+

∂
∂

y

H

x
H yx , 0=

∂
∂

−
∂

∂
x

H

y
H yx  thus 022 =∇=∇ yx HH  (10d) 

 
which defines an analytical function yx iHHH +=//  where i is imaginary number: 1−=i . In 

this study a further approximation is no external applied fields of xH  and yH  for the problem 
addressed in Fig. 2. Thus, the following trivial solutions is taken in the following analysis: 
 

0== yx HH          (10e) 
 
  Hence, the problem to be dealt with can be stated as a plane stress or plane strain infinite 
large plate with the constant µσ ,C  and v, which contains a through dielectric cylinder in the 
shape of ellipsoid or crack with the coefficients 1ε , 1µ  and 1v , as those illustrated in Fig. 4. In 
this study the dielectric cylinder is gas while the plate is metal, so 01 ≈µ  and 01 ≈v . The metal 
plate contains no free charge or charge source, subjected to a constant uniform electric current at 
infinite:  
 

0== xx EJ , ∞−== EEJ C
y

C
y σσ   when ∞→+ 22 yx  (10f) 

 
For a plate conductor with finite thickness, its mechanical field is somewhere in-between 

plane stress and plane strain solutions. When 3HH x << , 3HH y <<  and 03 =J  on the 

plate’s surfaces, there is no essential difference between plane stress and plane strain solutions of 
magnetic and electrical fields after the effect of magnetic susceptibility is taken into account for 
finite thickness.  
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2.4 Definition of “Crack” – Sharp and Blunted Crack Tips 
The defect’s geometry in a conductor can be distinguished into two classes, ellipsoids and 

cracks. The former can be dielectric inclusion or gas pore; the latter represents a geometric 
discontinuity, e.g. separation of grain boundary or other kinds of interfaces. Although 
mathematical a crack with sharp tip can be considered as the degenerated case of the ellipsoid, 
however, it is difficult to use ellipsoid to describe a long crack with blunted tip, the associated 
physical phenomena within the local area around the blunted tip can also be very different.  

 
Experimental observations indicate that crack tips in engineering materials are always 

blunted. For a metal that obeys conventional elastic, perfectly-plastic stress-strain law under 
plane strain condition, blunting of a sharp crack tip can be quantified by the slip-line field 
solutions illustrated in Figs. 3a,b. When remote applied stress ∞σ  is much smaller than the 
material’s yield stress, the corresponding stress, strain and deformation in the close vicinity of a 
sharp crack tip are described by the Prandtl’s field solution [22, 68] plotted in Fig. 3a. Blunting 
appears when ∞σ  increases; the near crack tip field solution is given by the Rice-Johnson-
Prandtl’s field in Fig. 3b; where the sharp tip becomes a semi-circle configuration that connects 
to the two parallel crack wedges. The specified solutions obtained in [68] applies for the shaded 
area ahead the blunted semi-circle tip in Fig. 3b, which has the similar structure as the slip-line 
field around a hole of the radius br  but is confined by the Prandtl’s field solution presented in Fig. 
3a. Although strain-hardening or plane stress condition causes certain deviation, the Rice-
Johnson’s solution in Fig. 3b provides the fundamental information of blunting with associated 
analytical strategy to connect near tip field solution (hole solution) with the surrounding small 
yield solution. This methodology will also be used for finding the electrical solution of blunted 
crack tip in this analysis. 

 
Fig. 3: The defect’s geometry to be studied:  (a) a crack with a mathematically sharp tip; its 

stress, strain and displacement fields are characterized by Prandtl slip-line field as plotted; (b) a 
crack with a blunted tip represented by the semi-circle of radius br  and two parallel edges; where 

the shaded area in the front of the tip is the Rice-Johnson slip-line field [68] surrounded by the 
Prandtl field in (a). 
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3. Solutions of an Infinite Central-Cracked Conductive Plate under Constant Current 
3.1 General Solution of Magnetic Field 

Under the two-dimensional approximation and boundary conditions given in Section 2.3, 
Maxwell equations II and III in (2) can be satisfied by an “electric potential” ϕ : 
 

02 =∇ ϕ  and  
x

Ex ∂
∂−= ϕ

,  
y

E y ∂
∂−= ϕ

   (11) 

 
Therefore, Maxwell equation IV of (2) yields: 
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Substituting (10a, 10e) or (10b, 10e) into (12a), its first two rows become: 
 

y
H

x C∂
∂=

∂
∂−

σ
ϕ 3 ,   

x
H

y C∂
∂=

∂
∂

σ
ϕ 3       (12b) 

 
In the complex plan z where z is defined by iyxz += , Equation (12b) are the “Cauchy-

Riemann” relations when ϕ  and 3H  form an “analytical function” as following in the domain Ω  
where (12b) holds: 

 

 ( ) C

H
izF
σ

ϕ 3+−=          (13) 

 
So the relations (12b) and (13) imply: 
 
 ( ) 02 =∇ zF  or 02 =∇ ϕ      and       03

2 =∇ H    (14) 
 
which can be stated as: for a plane stress or plane strain boundary-value problem governed by 
Maxwell equations (2) under the conditions (10a-10e), its electrical potential ϕ  and the magnetic 
field 3H  associated with electrical current are the real and imaginary parts, respectively, of an 
analytical function defined by (13). Thus, when one of them is fixed, another can be solved 
through the Cauchy-Riemann condition (12b).   
 
3.2 Solutions of Electrical Field with and without Breakdown 
 When the size of a defect, such as a crack, is much smaller than the size of a plane strain 
or plane stress conductor plate, the latter can be simplified as an infinitely large with remote 
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uniform electrical density field ∞E ; which contains a central-located dielectric crack-shaped 
inclusion of length 2a without free charge on its surfaces. Also, under the steady-state 
approximation electrical currents stay unchanged during time evolution, which is true only when 
the time scale considered is very small.     
 

Considering the two fundamental cases: electrical current bypasses the crack without or 
with electric-breakdown near the crack tips when ∞E  is perpendicular to the crack, as illustrated 
by the Problem A and Problem B in Fig. 4a and 4b; respectively. For the case with breakdown, 
there is an arcing zone with the length b∆  near the tip, in which a distributed current breakdownJ  
flows from one surface of the crack to its opposite.  

 
The linearity of Maxwell’s equations (2) allows the Problem A to be treated as the 

superposition of two sub-problems described in Fig 4a, denoted as problem I with solution 
{ }II H3,ϕ  and problem II with { }IIII H 3,ϕ , respectively. Similarly, the solution of Problem B is the 

superposition of problem A and another problem III with the solution { }IIIIII H 3,ϕ  in Fig. 4b. 
Hence, instead of A and B, the issue becomes finding solutions for the relatively simplified cases 
I, II, and III. This solution strategy is borrowed from the BCSD (Bilby-Cottrell-Swinden-
Dugdale) model in the dislocation analysis of crack [17, 18]. Introductions of the model, the 
general dislocation theory, and applications to crack problems, can be found, e.g. in [27,69].  

 
Applying the complex function method introduced by Mushelishivili [21], the analytical 

solutions of the problems I, II, III, thus, A and B, have been obtained. The main results are listed 
below and a brief introduction of  the derivations is given in Appendix I. 
3.2.1 Problem I: Uniform Field  

 
 constyEI += ∞ϕ , constExH CI += ∞σ3     (15) 
 
3.2.2 Problem II: Crack Solution under Surface Current 

 

( ) ( )223 azziE
H

iz
C

II
II −−−=+− ∞

σ
ϕ      (16)  

 
3.2.3 Problem A: Crack Solution under Remote Uniform Current 
 Omitting the constant term, the superposition of (15) and (16) leads to: 
 

 ( ) 223 aziE
H

iz
C

A
A −−=+− ∞

σ
ϕ  and 

22 az

izE
iEE A

y
A
x

−
=−

∞

 (17)   

 
Alternatively, the potential Aϕ  and electrical density field AE  can be respectively expressed in 
the following asymptotic forms in the polar coordinate system { }θ,r  originated at a crack tip: 
  

 ( ) arErA 2
2

sin, ∞
�
�

�
�
�

�−≈ θθϕ           when   0→r   (18a) 
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 ( )
2

cos
2

,
θθ

r
a

ErE A
x

∞=  ,  ( )
2

sin
2

,
θθ

r
a

ErE A
y

∞=     when   0→r   (18b) 

 
Plotted in Fig. 5a is the local magnetic field, i.e. the imaginary part of (16). One sees that 

at the two ends of the crack 3H  reaches its peak values, aE Cσ∞± . Plotted in Fig. 5b are the 
contours of the electric potential of the problem A, i.e. the real part of (17). The corresponding 
amplitudes of electric currents in the x and y directions, respectively, are given in Fig. 5c and 5d. 
Both of them show singularity at the crack tip, i.e. 0, == yax .  

 

 
Fig. 4 Modified BSCD-Model – a strategy to obtain electrical field solutions: (a) 
Poblem A: which is the superposition of problem I and II; (b) Poblem B: which is the 
superposition of Poblem A and III , representing electric-breakdown within the small 
zone b∆  near the crack tips. 
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(a)  Magnetic field IIH3 obtained from (16), the solution for the problem II in Fig. 4a  

 

 
(b) The iso-valued contours of the total electric potential computed according to (17) 
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(c) Amplitude of the electric field in the x direction, which has singularities at 0, == yax  

 

 
(d) Amplitude of the electric field in the y direction, which is zero along the line 0, =< yax  but 

has a singularity at 0, == yax  
Fig. 5 Solutions to the plane problems I, II and A in Fig. 4a. 

 
 
3.2.4 Problems III and B:   
 Solution (18b) of Poblem A demostrates a “singular” current at the crack tip. In reality, 
when breakdown takes place, electrical current may penetrate the dielectric medium contained 
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by the crack, if this provides an easy path for electrical flow that removes the singular current 
field caused by the sharp tip. Mathematically, this breakdown current, breakdownJ , can be counted 
as another electrical load on the crack surface, as described by the problem III in Fig. 4b. 

breakdownJ  has the opposed direction as compared with the surface current load in the Problem II 
of Fig. 4a; so it ( breakdownJ ) induces a singular electrical field but with opposite sign at the crack 
tip, which cancels the singularity in the solution (17, 18b). This trade-off provides a condition to 
determine the size of breakdown zone b∆ .   
 

As reported in [25, 26], experimental observations indicate that breakdownJ  can be estimated 
by the following empirical relation: 
 

 ( )r
Vr

breakdown δ
β ∆=J   Cσββ ~=      (19) 

 
where β~  is a dimensionless coefficient and 100

~ ≈β  [25, 26]; ( )rδ  is the distance between two 
surfaces of the conductor. For the specimen in Figs.4a,b, ( )rδ  is the crack opening displacement 
between a pair of points on opposite crack surfaces with distance r to the tip, and rV∆  is the 
difference in electrical potential between the two points. The solution of ( )rδ  will be given in 
the next section and rV∆  is given by (18a). According to these solutions, the ratio ( )rVr δ∆  is 
constant when ∞E  is fixed. Then, applying the same procedure for Problem II in Fig. 4a, after 
superposition of the solutions, the following electrical potential and magnetic fields of the 
Problem B has been obtained: 
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where C is a complex constant, and 

 

( )2

22
C

MI aEvk

G
B

σµ
β

κ
∞

=          (21) 

 
and b∆  can be expressed by the following polynomial after a nonlinear regression: 
 

  4
4

3
3

2
2

ˆˆˆ BkBkBk
a BBB

b ++=∆
,  

B
E

B
C ∞

= σˆ     (22) 

where 
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.125098402 =Bk , .0004012703 −=Bk ,  .00303304 =Bk  (23) 
 
Plotted in Fig. 6a is the potential drop between the two opposite crack surfaces according to (20) 
while in Fig. 6b is the regressive solution of b∆  expressed by (22). 
 

 
(a)      (b) 

 
Fig. 6 (a) the potential drop between the two opposite crack surfaces according to (20), expressed 

as the dimensionless number 
B

E Cσ∞

; (b) Regressive solution of arcing zone size b∆  

 
 
3.2.5 Problem C: Solution of Circle Hole    

As illustrated by Fig. 3, a long crack with blunted tip can be treated as a notch with two 
parallel wedges and ended by a semi-circle hole of diameter br . The near field solution for a 
circle hole in a very large plate has the same structure as that in the local area ahead of a semi-
circled notch tip; where “very large” means that the dimensions of the plate, i.e., its width and 
height, are much greater than the radius of the hole. Therefore, this subsection studies the 
solution of a circle-shaped dielectric inclusion in an infinite conductor plate, see Fig. 7a. 
Although this is another extreme case of ellipsoid inclusion when its short and long axes become 
equal, this condition leads to an infinite large radius according to the classical ellipsoid solution 
[20].  

As a straight-forward application of the procedure applied in the previous subsections, 
the corresponding electrical potential ( )zCϕ and magnetic field ( )zH C

3  have been obtained: 
 

( ) ( ) ( ) ( ) ( )z
y
zU

i
x
zUzH

iz
C

C
C φ

σ
ϕ +��

�

�
��
�

�

∂
∂−

∂
∂=−+−

2
13     (24) 

 
where   
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    (24a) 

 
Plotted in Figs. 7b and 7c are the contours of ( )zCϕ  and ( )zH C

3 , respectively. The potential drop 

between two ends of the hole in the current direction, denoted as 0δV∆ , yields: 
 
 brEV ∞=∆ 40δ          (25) 
 
Remark: (24) and (25) can be verified by substituting iyxz += , iyxz −=  into (24a) then (24), 
which leads to: 
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where the x coordinate is in the vertical direction of Fig. 7a. 
 

 
 
Fig. 7 (a): Problem C: an infinite large conductor plate containing a circle hole under uniform 
electrical field ∞E  at remote; (b) and (c): contours of the electrical potential and magnetic field 
in the area around the hole.  
 
 
3.3 Solution of Stress Intensity Factor Caused by Lorentz Force 
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In the following analysis, symbol “d” represents unit thickness for both plane stress and 
plane strain cases. Under this convention electric current and its density have the same 
magnitude but with an implicit difference (square of unit length) in dimension. Hence, for 
simplification, symbol “J” can stand for either electric current or electric current density upon 
the context of applications.  

 
 Recall the equilibrium equation (1): when the magnetic field perpendicular to the plate, 

i.e. 3H , is taken into account, the first term on the right hand side is a high order small quantity 
that can be left out; the corresponding Lorentz force is determined by the second term, presented 
as a distributed load Rp  per unit area “ dxdy ” in { }yx,  plane: 
 
 ( ) ( ) ( ) ( ) ( )3HiEEzp yxM

C
MqeR ⋅+−=×=×= µσµρ HJBv     (26) 

 
where Mµ  is the magnetic permeability. According to (15) the amplitude of the magnetic field 

IH 3  is proportional to the x-coordinate so it is relatively weak in the area around the crack; 

whereas at remote, since xE  vanishes, IH 3  produces the Lorentz force along the direction 
parallel to the crack. Therefore the following analysis focuses on the magnetic field solved in 
problem II: IIH 3 . 
 

For a two-dimensional cracked panel like those in Fig. 4 under a mechanical load, e.g. 
(26), the corresponding stress field near the crack tip can be expressed by the following 
asymptotic formulation in the polar coordinate system { }θ,r  originated at the crack tip [22]: 
 

( ) ( )[ ]θφθφ
π

σ IIijIIIijIij KK
r

+=
2
1

       (27) 

 
where subscripts “I” and “II” refer to mode I and II crack tip fields, corresponding to tension and 
shear load, respectively; the detailed expressions of the angular factors ( ) ( )θφθφ IIijIij ,  can be 
found in [22]. Then, according to the procedure introduced in [23, 24], the corresponding stress-
intensity factors in (27) are: 
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and 

 
2

3 κ−=Ik , 0=IIk         (29) 
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where ( ) ( )vv +−= 13κ  for plane-stress and v43 −=κ  for plane-strain. The double infinite 

integrals in (28) are solved analytically by the conformal mapping  ��
�

�
��
�

�
+=

ς
ς 1

2
a

z  that 

transforms the infinitely large conductor plate in Fig.4 into the circle with a unit radius centered 
at the origin of the ς  plane while transforms the crack with length 2a into the rest area of the 
plane, as illustrated in Fig. 8. Details of this procedure can be found in [21]. 

 
 For mechanical boundary value problem, stress field (27) and stress intensity factors (28) 
determines the displacement field through (6), the corresponding crack opening displacement 
(COD) along the wedges near a mathematically sharp crack tip can also be expressed 
asymptotically in the polar coordinate system originated at the tip: 
 

 ( ) ( )
G

Ea
arkvr

C
M

ICOD

2∞

≈
σµδ κ , 

( )
( ) πκκ 21

12
+

−= v
v  for   0→r   (30a) 

 
For a blunted crack illustrated in Figs 3b, the corresponding COD can be expressed as: 
 
 ( ) ( )effCODteff rr δδδ +=         (30b) 
 
the first term on the right hand side of (30b), tδ , is the crack tip opening displacement (CTOD) 
defined as below: 
 
 int0 Jb Ybt σδδ +=          (30c) 
 
where 0b  equals 1 for plane stress and 2 for plane strain [22]; Yσ  is material’s yield strength; 

intJ  is the J-integral [28]: 
 

'

2

int E
K

J I=  and 

�



�
�

−
=

strain plane         
1

stress plane            
'

v
E

E
E      (30d) 

 
where IK  is given by (28) and E is Young’s module.  
 

The second term on the right hand side of (30b) is the COD defined by (30a) but r  is 
replaced by effr  that is a function of x, the horizontal coordinate in Fig. 3b, and is determined by 
the continuing condition of electrical potential between the circle hole solution (25) and the crack 
tip solution (18a) at the intersection between the circle tip profile and straight wedge of the crack 
in Fig. 3b: 

 
( )xarErE effb 224 ∞∞ =   at 0=x      (30e) 
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which leads to: 
 

( )
a
r

xr b
eff

22
+−=  for    0≤x        (30f) 

 
For a crack tip without blunting: rreff = . 

 
Fig. 8 Conformal mapping to obtain integration (28), which transforms the z plane on the left 
into the area surrounded by the circle with a unit radius in the ς  plane on the right, while the 

area contained by the crack into the rest area of  the ς  plane, see [21].   
 
4. The Two Competing Failure Mechanisms: Breakdown and Melting 
 
4.1 A Circuit Model for the Two Mechanisms  

We study the condition of breakdown based on the solutions (15-18a,b) and (20). 
Considering the material point pair ( )60 , AA   plotted on the left hand side of Fig. 9, which sits on 
the opposite surfaces near a crack tip with a potential difference: 6006 ϕϕ −=∆V   according to 
(18a) and Fig. 5(b). This potential difference may drive electric current flowing through two 
possible ways: bypassing around the crack tip or breaking the dielectrical barrier between 0A  
and 6A  by arcing. These two competing mechanisms can be simplified as the capacitance-
resistance circuit model for a given current illustrated on the right-hand side of Fig. 9. When 
current goes through the resistance unit that represents the crack tip, the corresponding energy 
dissipation can be estimated by: 
 

 �� ≈Γ=∆Ψ
Γ

6

0

22
2

r

bypassCbypassbypass drRdR JJ       (31) 

 
where bypassJ  is the current along the path bypassing crack tip; R  is electric resistance; 6r  is the 
distance to crack tip.    
 



 21 

On other hand, when breakdown takes place within the area at the distance equal and less 
than 6r , the energy dispassion is  
 

�������� ���� ⋅⋅⋅⋅≈≈≈≈⋅⋅⋅⋅∇∇∇∇====
66

0

r

ir
breakdownr

r

ir

rV

breakdownbreakdown drVdrd JJ ∆∆Ψ
∆

ϕϕ    (32) 

 
where rV∆  is the potential difference at the point on crack surface with the distance r to the tip; 

breakdownJ  is the breakdown current; ir  is the distance that no breakdown when irr <<<< .   
 

Thus, the condition for the occurrence of electric-breakdown can be written as below: 
 
 bypassbreakdown ∆Ψ≤∆Ψ          (33) 
 
According to the experimental results, e.g. [5, 6, 25, 26], breakdown is an instant, complex 
process by which the voltage induced E field ionizes dielectric medium through exciting 
electrons to the orbits with higher energy level which may break the chemical bond to release 
more energy and make the dielectric medium be a “conductor”. Once this process occurs, the 
corresponding breakdown current reaches its peak value, empirically expressed by (19), within a 
short time interval through arcing, followed by subsequent geometric change of the conductor 
due to melting. Under the aforementioned short time interval and “steady-state” approximations, 
by substituting (18a) and (30) into (19): 
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MI

breakdown
aEvk
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σµ
β

κ
∞

≈J ,       (34)  

 
which reveals that the amplitude of the breakdown current is approximately constant in the 
arcing zone.  
 
 According to (18b) the bypass current density yields: 
 

 
r
a

EC
bypass

2∞≈ σJ          (35) 

 
 
Substituting (34) into (32) and (35) into (31), respectively; and let 0====ir  in (32), one obtains: 
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and 

( ) [ ] b
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C

Lbypass rEadRk ∆∞=∆Ψ )log(2
2σ ,  0→tipr     (37) 
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where d is the thickness of the specimen; b∆  is given by (22); Lk  is a constant with the 
dimension of length when bypassJ  is current density.  
 

Substituting (22) into (36) and omitting the terms in (22) with the order higher than 2, an 
alternative expression of the total energy dispassion at electric-breakdown is obtained: 
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When the electrical potential and current in (32), respectively, are replaced by displacement and 
stress relation, one can find that the resulted equation is identical to the J-integral derived in the 
BCSD model in continuum fracture mechanics [28]. Considering breakdown is an onset point 
that material losses its capacity against crack growth, breakdownΨ in (32) and (38) represents the 
“fracture toughness” under this condition. 

 
On contrast, equation (37) suggests the current bypasses induced energy dissipation 

proportional to - tiprlog  whereas for a mathematically sharp crack tip tipr  approaches zero. This 

implies that an electric-breakdown is a natural phenomenon, which can be inevitable under 
certain circumstance, e.g. a sharp crack without tip blunting. Consequently, the conditions for 
blunting and the corresponding energy dissipation become the objects to be studied hereafter.  

 
Experimental observation [5] indicates that breakdown takes place only when the 

intensity of applied electric field reaches a certain critical value. This leads to another question: 
what happens at a crack tip when the electric field is below the critical value? There are at least 
three possibilities: (i) the crack tip in the tested specimen being initially “blunted”; (ii) the tip is 
initially “sharp” but the stress intensity factors (28) induced by Lorentz’ force cause 
development of plastic zone in the form of Rice-Johnson-Prandtl’s field (Fig. 3b); according to 
(30c,d): 

 

( ) ( )
'12

5
04

2

E
ab

E
k YCMI

t

σπσ
κ

µδ ∞
��
�

�
��
�

�

+
=       (39) 

 
so in (37)  ttipr δ≈  which removes the singularity; however, since tδ  is proportional to 

( ) EMY
2µσ , its absolute value is very small and the integral (37) can still be considerable high; 

(iii) the last possibility is that the energy dissipation associated with the singular electric field 
(18b) is transformed into thermal vibrations with localized high temperature field, which “melts” 
the sharp crack tip into a blunted “hole”. Since (31) and (37) are very simplified estimates, the 
following subsection develops a more precise solution of the temperature field around a crack tip. 
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Fig. 9  Models for breakdown analysis: (a) A circle model that represents two competing 
mechanisms around a crack tip: the current breaks through the capacitance unit 60 AA  or goes 

around the crack tip resistance    
 

  
4.2 Temperature Field Solution - Thermal Dissipation Analysis 

The asymptotic behavior of the temperature field near a crack tip before breakdown is 
investigated, presuming the field to be governed by the heat-conduction equation (7), which is 
consistent with the previous stated “steady-state” approximation within small time interval; so all 
corresponding solutions are “rate” independent. Also it is assume the heat conduction coefficient 
and electrical resistivity are constants. Then the electrical field solutions of cracks obtained in 
previous section are applicable except in the very small area just ahead blunted tip. According to 
(17) the energy dissipation per unit area; which defines the heat source density Hρ  in (7), yields: 
 

 ( ) ( )( )2222
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ziz
ER C
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−−

== ∞σρ J     (40) 

 
where J is the current density; CR  is the resistivity, and C

CR σ1= . 
 

By substituting the asymptotic expression (18b) into (40) then into (7), the governing 
equation of  heat conduction in the polar coordinate system originated at the crack tip reads:  
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which leads to the following temperature field solution: 
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where the 1C , 2C , and 3C  are real constants. Removing the imaginary part of (42) leads to a 
constraint to its coefficients: CCC == 21  which cancels the terms with angle θ .  
 

 
  

Fig. 10 An “asymptotic” two-phase model for the temperature field near a crack tip;  
  

 
For most metal-based conductors, melting is the process that crystals loss their long-

range periodic orders. According to the analysis in [29, 30], at the temperature just above melting 
point ( MT ), liquid metals usually present as amorphous structure (one-dimensional quasi-crystal) 
which segregate into particles in the size 2-10nms with weak connection between each other. A 
direct consequence is that the material loss stiffness against deformation. Any mechanical load, 
e.g. Lorentz’ force (26,27), drives a viscostic-like flow in the melting zone and cause the tip 
blunting, as described by the Rice-Johnson-Prandtl field in Fig. 3b. Thus, a two-phase model of a 
solid crack panel with crack tip melting zone, as illustrated in Fig. 10, is introduced to describe 
these phenomena approximately. At the border between the solid conductor and the melting zone 
the temperature must be the solid-liquid phase transformation temperature, denoted as MT .  

 
Obviously melting is a dynamic process. Once electrical load applies to a cracked 

conductor, the material near the sharp crack tip starts to melt due to the high amplitude of current 
and associated energy dissipation concentration. This concentration causes continuing expansion 
of the melting zone until it reaches a relatively stable state after the electrical resistance induced 
dissipation balances the extra energy exhausted by the capacity heat to warm up the material and 
latent heat of phase transformation. This process can be described by the following two stages, 
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characterized by the quantity Q∂ , the heat flow that passes through the solid-liquid boundary at 

Mrr = : 
 

Stage I: warm up in the time interval tt ∆≤≤0 , the initial material temperature is 0T : 
 

( )[ ][ ]� � �� �
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where Mr  is moving; at Mrr = : 
 

Mrr
Q r

T

=∂
∂−=∂ , MTT = , ( )[ ]0

2~
TTcCkR MspfDmMC −+= ρJ   (43b) 

 
In (43a,b) MJ~  is the current density at the solid-liquid border; fC  is the solid conductor’s fusion 

enthalpy per unit mass, i.e. the energy absorbed during solid-liquid phase transformation; spc  is 

the heat capacity of solid conductor; mρ is mass density and Dk  is a unit constant but with the 
dimension of 1/t (1/second). Thus, product mfC ρ  is the latent heat per unit volume 
 
Stage II: steady state ( tt ∆≥ ): 
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where Mr  is constant; at Mrr = : 
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Q r

T

=∂
∂−=∂ , MTT = , ( )[ ]0

2~
TTcCkR MspfDmMC −+= ρJ   (44b) 

 
Under the aforementioned approximations, in stage II the temperature fields of both the melting 
zone and solid phase obey (42). Using the first two relations of (44b) to fix the constants C and 
C3  in (42), it becomes:  
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where br  is given by (39).  
 

Also, according to (18b) at Mrr = : 
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For simplification, the case that fsp CTc <<∆  at MTT =  is considered, so the second term in the 

last equation of (44b) can be omitted. By combining it with (45) an estimate of Mr , the size of 
the melting zone, is obtained: 
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which leads to a threshold of remote electrical field intensity for melting: 
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It indicates that for a mathematically sharp crack tip ( 0=br ) melting will take place once ∞E  is 
nonzero but it will have a finite value if  0>br . It will be a straightforward to obtain Mr  and 

∞
meltingE when Tcsp∆  is also taken into account.  

  
Therefore, the energy dissipation that creates the melting zone yields 
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where Mr  is given by (46). It is reasonable to further assume that the energy consumption in the 
melting zone is much greater than that in the solid phase due to latent heat; then after taking t∆  
be unit time the equation (37) can be rewritten in the form as: 
 

 ( )2
 ∞≈∆Ψ≈∆Ψ EdRr C

CMmeltbypass σπ       (48) 
 
 
5.  The Threshold of Applied Electric Field Intensity for Breakdown and Melting 
 
 The crack problems solved in the previous sections were discussed in the framework of 
macroscopic mean-field theories. Solution (46) indicates that a melting zone will occur at a sharp 
crack tip once ∞E  is nonzero, whereby the following questions are raised: 

- What is the length scale that defines the applicability of the obtained solutions, since the 
governing equations (1-8) are under “mean field” approximation and the macro scale-
sized cracks are considered?  

- How to justify the effects of small-sized defects at atomic scale? 
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Focused on these questions, in this section we study the interaction between atomistic-sized 
impurities and electronic transportation under the framework of semiclassical theory of 
conduction in metals, establishing quantitative linkage from submicro and quantum physics to 
the derived mean field theory-based solutions, so as to obtain engineering applicable criteria for 
the two competing failure mechanisms: breakdown and melting. The introduction of the 
semiclassical theory can be found, e.g. in [16, 31]. The discussions about fracture toughness and 
the length scale in mechanical analysis can be found in [4, 28, 32-36].   
 
5.1 Microscale defects and A Length Parameter that Bridges Solutions from Different 
Scales 
5.1.1 About the Ohm’s law 

 It is well-known that micro and nano scaled defects, such as dislocations and impurities, 
have significant effects on material’s mechanical properties. This subsection studies their effects 
on electron transportation process and material’s conductivity. According to the framework of 
the “semiclassical theory of conduction in metal” [16]: in electric current flow all electrons stay 
in a fixed, not fully occupied, conduct band without inter-band transportation. Electric resistance 
is essentially the subsequent result of collisions between electron and electron, electron and 
lattice imperfection, and, electron and nuclei thermal vibration (phonon). For ideal conductive 
metal there will be no such collisions. The average time between two collisions defines 
“relaxation time”, denoted as “ Rτ ”. Electric current density is an average of the product between 
the velocity of electron defined in k space, ( )kv , and the deviation of charge distribution 
function from equilibrium state g∆ : 
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where ( )knε  is the energy associated with electron e at nth band, which is a function of the 
moment vector k in reciprocal space, and ( )εf  is the Fermi-Dirac function of energy distribution. 
Hence, electric conductivity Cσ  is a tensor that sums the contribution from all n conducting 
bands: 
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When Hall’s effect is omitted, only one conduct band is taken into account and isotropic 
approximation applies, (51) degenerated to the classical expression in Drude’s theory: 
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where n and m denote the density and mass of electrons, respectively; Fε  is Fermi’s energy.  
 
It is well-known that, by assuming the same relaxation time for both electric flow and 

heat conduction, the “mean free path” ml , i.e. the average distance that a conduction electron 
travels between two collisions, is the product of Fermi velocity, Fv ,  and Rτ : 
 
 RFm vl τ=          (53) 
  
Obviously the “mean free path” ml  in (53) characterizes the space that restricts the motion of 
each single electron, which can be used as the smallest size of “cell” to define the average 
behavior of electrons in mean field theory if Rτ  is known. By omitting the electron-electron 
interaction, since it becomes significant only under very low temperature, the effective relaxation 
time can be expressed as the geometrical average of that for electron-phonon interaction, denoted 
as pe−τ , and that for electron-imperfection interaction, ie−τ . According to Matthiessen’s rule: 
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The Block’s 5T  law indicates that pe−τ  is proportional to 
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D   if temperature T  (Kervin) is 

much smaller than Derby temperature DΘ . When T  is the same order or larger than DΘ  the 
following relation is suggested in appendix J of [31] for electron-phonon interaction: 
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        (55) 

 
where K, Bk , and Sc  denote volumetric Young’s module, Boltzmen’s constant and the speed of 
light, respectively; Fk  is the radius of Fermi surface in reciprocal space, and *m  is the 
equivalent mass of electron. 
 
5.1.2. Electron-Imperities Interaction 
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Fig. 11  Three impurities studied which causes electric resistance: (a) screw dislocation; (b) 

misfitted solution atoms; (c) empties. 
 
 Hence, a particularly interests is given to electron-impurities interaction in this study. 
Three kinds of common impurities are taken into account: screw dislocation core, empty and 
solution atoms, as illustrated in Fig. 11. According to the first-order perturbation theory, e.g. [31, 
37, 38] and recently [39, 40], a crystal lattice elastic strain causes change of the effective 
potential in the Hamiltonian to the electron wave functions, which yields:  
 
 ( ) Urr ∂∇=∆ :U           
 
where U∂  refers to a parameter associated with “deformed potential”, which is an integration of 
lattice distortion-induced strain energy over certain length scales. By the approximation of 
“dilute distribution” for an impurity that sits at the origin, U∂  is taken as the derivative of 
deformation energy with respect to deformation gradient; then for linear elastic small lattice 
deformation ( )rU∆  can be approximated by the total deformation energy caused by an impurity.   
 
   Hence, for an electron at the band with index n, according to the semi-classical theory 
the relaxation time can be expressed as below: 
 

 
( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ){ } kkgkgkgkgkk,
k

kgkg ~
1

~~
1

~
2 3

0 dW
nimp

ie

−−−=−
�

− πτ
  (56) 

 
where impn  is the number of impurities per unit volume; ( )kg  is distribution function of electron 

with current flow and ( )kg0  is that at equilibrium condition; ( )kk, ~
W  is the scattering function: 

 

( ) ( ) ( )( ) 2~~2~ kkkkkk, UW ∆−= εεδπ
�

     (56a) 

 
where �  is Planck’s constant, and,  
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 ( ) ( ) ( )rrrrkk nkkn
UdU ψψ ∆=∆ � ~

~
      (56b) 

 
where ( )rnkψ  is normalized plane wave function corresponding to momentum k with band index 
n and (56b) is the element matrix, e.g. defined in [38]. As introduced in [41], varies methods can 
be used to calculate ( )rU∆ . In this study the continuum lattice elastic theory is employed. Then, 
according to the analysis, e.g. [69, 27], ( )rU∆  for line screw dislocation is available. Also, the 
Eshelby’s eigen-strain method [42] provides the way to obtain the approximated solutions of 

( )rU∆  for diluted empty and misfit atom. In general,    

 ( )
in
i

i r
A

U =∆ r ,   i
offcutrr

b
−≤≤

2
     (57) 

 
where  the subscription 3,2,1=i  stands for screw dislocations, misfit solution atom, and single 
empty site, respectively; and 11 =n , 332 == nn ; the values of the coefficient iA  are listed in 
Table  1. The potential well defined by (57) are essentially applicable up to infinite. For the 
convenience of analysis, the cut-off radius i

offcutr −  is defined by 
 

 ( ) �
�

�
�
�

�∆=∆ −− 2
b

UrU ioffcut
i

offcuti α        (57a) 

 
where offcut−α is an ad hoc coefficient that must be much smaller than unit; since ( )riU∆  is fast 

degenerated function when r increases and its contribution can be omitted when i
offcutrr −> . In 

order to be consistent with the convention in statistic analysis, in this study 03.0=−offcutα  is 
taken. 
 
Table 1: Coefficients of (57) 

 Ai 
screw dislocation 

2

4

2π
Gb−  

misfit solution atom ( )
�
�

�
�
�

� +

−−
G

b

M

MGb

3
2

112

119 262π
 

empty site 

105

62bGπ−  

 where 

  
G
G

M G
2= , 

b
b

M b
2=  

 
where 2G  and 2b  are the bulk Young’s module and Burger’s vector for the solution atom. 
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In this paper the following additional assumptions have been adopted for obtaining the 
analytical solutions of the relaxation time: 
 

(i) Sphere Fermi surface with the radius FRF kk = ; consequently: 
 

( )
( ) ( ) 0

~~
2 3 =� ⊥ kkk,

k
dW

gnimp

π
      (57) 

 
where ⊥k~  is the component of k~  perpendicular to k, see Fig. 12. 
 

 
Fig. 12 Eq.(57) implies the equal-probability for the collisions 

⊥k~  and ⊥− k~ . 
 
 

(ii) Quasi-isotropic charge distribution [16]: 
 

( ) ( ) ( ) kkakgkg ⋅+= 0       (58) 
 

 
(iii) Generalized Matthiessen’s rule: additive summation for three different impurities for 

the scattering function in (57): 
 

  ( ) ( ) ( )( )�
=

∆−=
3

1

~~2~
j

j
j

imp UnW kkkkkk, εεδπ
�

   (59) 

 
 
(iv) Only the closed neighbor atoms to the impurity site are taken into account, so: 

 
( ) ( ) ( )�� −∆−= rrrrrrkk dUU RnkRkn

ψψ ~~
~

, offcutR
r −<~r , offcutR r −<r  

 
(v) The probability of Umklapp scattering is ignorable as compared with other 

mechanisms. 
 
(vi) Under the assumptions mentioned above, the following relation is applicable   
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  ( ) kkk d
m

d
e

⋅≈ 2

2
�ε          (60) 

 
, so there will be no difference between mass and equivalent mass of electron;  
in (60), me=9.11 3110−⋅ (kg); � : Planck’s constant � =6.6262 3410−⋅  ( tj ⋅ ). 

 
(vii) Classical expression of Fermi velocity  

 

F
e

F k
m

v ��
�

�
��
�

�
≈ �

   (meter/second)    (61) 

 
The values of the material’s constants appear in the equations in this subsection are listed in 
Table II. Applying the approximations and omitting high order small quantities, the dominant 
terms in the solutions of (56) are:  
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where 0a : Bohr’s radius, 0a = 0.5292(A); di is the average distance between impurities and the 
following relation has been applied: 
 

 3

1

i
imp d

n =          (63) 

 
Remark: For the N-ion crystal with the impurities in the form of vacancy(empty), the 
thermodynamic estimate of the number of vacant site is [16]: 
 
  ( )fvac Nn εα0exp −=           
 
where 0α  is a constant. More advanced discussions can be found, e.g. in [50-53]. 
 
 By substituting (62a,b,c) into (53), one finds that for all three kinds of impurities the 
mean free path yields: 
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 3

3

offcut

i
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d
bl
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∝          (64)  

 
For example, after substituting the material’s constants of iron in Table II into (62a) and (53), 
one obtains: 
 

 3
24

1 −

−

≈ i
disloelectron

d
π
α

τ
τ ,  81008.1 −⋅=τα (1/m3)    (65a) 

and 
32
ilm dl πα≈ ,   161025.7 ⋅=lα (1/m2)    (65b)  

 
When the average distance between screw dislocation lines is 50nm, i.e. md 8105 −⋅= , then 
 
 nmlm 633≈            (66)  
 
i.e. ml  is around a micron, which is a reasonable length scale to define the lower bound of mean 
field theory. However, a paradox exists since (65b) implies that the mean free path can be 
infinite large when the density of impurities is zero; the corresponding conductivity also 
becomes infinite. Since impurities always exist in real metal crystals and most metal conductors 
are polycrystalline, grain boundary can be considered as an upper bound of mean free path. 
Hence, this study suggests the following estimate: 

 
{ }mmm dlL ,min= , md : average size of grains    (67) 

 
to be the length scale that defines the availability of mean field theory. Replacing the Mr  in (46) 
by mL , we obtain an estimate of the intensity of applied electric field to initiate “melting” at a 
sharp crack tip: 
 

 
C

Dfmm
melt a

kCL
E

σ
ρ2

=∞        (68)  

 
Table II: Material’s constants[16] applied in the equations (56-63)  

 Ag Cu Fe Al 
G( GPa ) 75.8 110 193 62 

Fk (
A
1

)  
1.2 1.36 1.714 1.745 

Fv (
s

m610
) 

 1.3925 1.573 1.981 2.029 

where kg: kilogram mass;  m: meter; t: second;  j: joul;  A: angstrom.  
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5.2 Paschen Law and Threshold of Applied Electrical Load 
The “semi-classical theory” applied in the previous subsection fails when interband 

transportation of electrons, i.e. breakdown between electron orbits, takes place, which may 
results in formation of new interatomic bands or ionization of atoms when electrons become free, 
resulted in the release of chemical bonding energy. A macroscopic breakdown as shown in Fig. 1 
usually is the subsequent result of the applied voltage-induced ionization of the dielectric 
medium filled in the crack. This complex process can be phenomenologically described by the 
Paschen law [43]. This empirical law indicates that the occurrence of electric-breakdown is 
determined by the gap width between two electrodes and the voltage difference inbetween; 
where the latter can be expressed by a function (generally not linear) of the product of the 
pressure, p, of the dielectric medium and the gap, δ: 

 
( )pfVbreakdown ,δ=∆         (69) 

 
For gas, the pressure should be replaced by the gas density. For the problem addressed in Figs.1-
4, the opposite crack surfaces work as two electrodes with the potential difference given by (18a), 
so the gap width δ is the crack opening displacement defined by (30a,b). When δ is much smaller 
than a millimeter, recent study [44] suggested the following expression: 

 
δgVbreakdown =∆         (70) 

 
where g  is a constant in the order of 102(V/µ) when δ  is in the unit of micron (µ).  
 

As an electrical field is always accompanied with magnetic field that causes Lorentz’ 
force and corresponding crack opening, a question is whether this crack opening displacement 
plays can be used in (70) since electrical current and magnetic wave travel with the speed of light 
whereas propagation of deformation is limited by the speed of elastic wave; so a breakdown and 
subsequent material failure may occur before crack opens. Experiments indicate that the process 
of electrical breakdown usually lasts longer than millisecond; the time scale for this process is 
strongly dependent upon environment temperature but generally is enough for an elastic 
deformation. This class of phenomena is generally termed “time-dependent dielectric 
breakdown”(TDDB)[70,71]. Thus, in this study, it is presumed that the Lorentz’ force induced 
crack opening defined by (30a,b) occurs before breakdown induced material’s failure.  
 
 As plotted in Fig. 5b, the voltage difference has the maximum value at the center of a 
crack while degenerates to zero at a sharp crack tip where the separation is also zero. Thus, as 
illustrated in Fig. 13 for a conductor crack or a contact between two conductors there are at least 
three breakdown patterns, depending upon the distribution of voltage difference and profiles of 
crack opening displacement and/or contact surfaces. In the follows the solutions of electrical 
potential (17, 18a) and COD given by (30a-e) are used to identify which pattern will happen in 
reality and to find the corresponding critical value of ∞E  at breakdown; the latter defines the 
threshold of electrical load, denoted as ∞

breakdownE .  
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Fig. 13 Three patterns of electric-breakdown: (a) with a distance to crack tip; (b) at crack tip; (c) 
within a localized area away from the tip; where the contours are electrical potential. Occurrence 
of actual pattern depends upon crack opening profile and electrical potential distribution, which 
are the functions of crack geometry, level of applied load, material’s electrical, magnetic and 
mechanical properties.  
 

Starting at the configuration illustrated in Figs 3b, the δ  in (70) is given by (30a,b): 
 
 ( ) ( )effCODteff rr δδδ +=        (30b) 

 
and 

( ) ( )
0

2
4

A

arE
r ref

effCOD

∞

=δ   and ( )20
2

C
MI akv

G
A

σµκ

=    (30a) 

 
According to (18a) and (25), the electrical potential drop between the two opposite surfaces 
yields: 
 

( )arrEV refb 224 +=∆ ∞        (71) 

 
When the crack tip initial radius is much greater than the deformation-induced radius increase, 
i.e., omitting the second term of (30c); then, bt r≈δ . By substitute (30b) into the right hand side 

of (70) while (71) into its left hand side, the ∞
breakdownE  is the root of ∞E  for the resulted equation: 
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For a crack with sharp tip: 0=br  and rreff = , the non-trivial solution of (72) is: 
 

 
2

0

g

A
Ebreakdown =∞           (73) 
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Therefore, under this situation the breakdown will take place once ∞∞ ≥ breakdownEE , starting at 
crack tip, as illustrated in the Fig. 13(b). 
 
 For 0>br , the non-trivial solution of (72) yields: 
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By substituting (30f), i.e. 
( )
a
r

xr b
eff

22
+−= , into (74), ∞

breakdownE  is the solution satisfying the 

following condition where x is defined in Fig.3b: 
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∂ ∞

x
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Since the first two terms of (74) are monotonic to effr , instead of solving the first relation of (75), 
the minimum of (74) can be obtained by the minimum of its third term: 
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which leads to 
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By varying the material’s constant 1A  there will be two cases: (i) 221 ≥A  so 0≥x ;  
breakdown occurs in the circle-shaped crack tip, corresponding to the case illustrated in Fig. 
13(b); (ii) 221 <A  so 0<x ; breakdown occurs in the area with a distance breakdownr  to the crack 

tip, as illustrated in Fig. 13(a); the breakdownr  yields: 
 

 
( )

( )2

1

11
2

2

22

−

−+=
A

AA
a
r

rr b
bbreakdown       (77) 

 
    
 
5.3 Breakdown or Melting ? A Derived Material’s Constant to Identify the Governing 
Mechanism 



 37 

Relationship (68) gives ∞
meltE  at onset of crack tip melting whereas (73,74) predicts the 

threshold at breakdown. For engineering material there will be three different cases: (i) 
∞∞ < meltbreakdown EE : breakdown dominates the material’s failure process when applied electrical 

load ∞∞ ≤ meltEE  and ∞∞ ≥ breakdownEE ; (ii) ∞∞ > meltbreakdown EE : crack tip melting zone-induced 

thermosoftening and subsequent crack propagation may present once ∞∞ ≤ EEmelt ; (ii) 
∞∞ = meltbreakdown EE : both mechanisms may occur simultaneously.   

 
Further more a practical question is: when an electrical load ( )∞∞∞ ≥ meltbreakdown EEE ,max  is 

imposed to a conductor with crack, which process, melting or breakdown, will govern the 
material’s failure?  In order to identify the dominant mechanism under this situation for an 
engineering material, a “comparison factor” is introduced as below: 
 

 
breakdown

bypass
pD

∆Ψ
∆Ψ

=         (78) 

 
where breakdownΨ  is defined by (38) and bypass∆Ψ  by (48) in which the Mr  is defined by (46); also 

∞∞ = breakdownEE  defined by (73) is applied in this relation. Table III lists the values of the 
dimensionless constant coefficients presented in (38, 46, 48, 73).    
 
Table III: 

v  (Possion’s Ratio)  κ  kv  Ik  Dk  2Bk  
3.0  ( ) ( )vv +− 13  1815.0  ( ) 23 κ−  1 12509.0  

 
Obviously, when PD  defined by (78) is greater than unit, electrical breakdown dominates 

whereas the melting mechanisms takes over when 1<PD , which provides a hint for the design 
of materials or devices with desirable dominant mechanism. This is because, in contact systems 
made of conductors, the mechanical, electrical, and temperature fields near the edges between 
two contact surfaces essentially have the same structures as that near a crack tip [48, 49, 55-57].   

 
Listed in Table IV are the material constants of four common used conducting metals and 

the corresponding values of PD . In the second row from the bottom one finds 1>PD  for the 
three nonferric metals (Ag, Cu, Al) as well as for the iron at the low ferric end; whereas 1<PD  
for the iron at high ferric end. This is because higher permeability Mµ  results in larger Lorentz’s 
force through equ.(20), which leads to larger crack opening displacement as indicated by (30) 
and, subsequently, requires higher voltage at breakdown according to Paschen’s law (70). Hence, 
one may conclude that for a cracked specimen made of low ferric metals, electric-breakdown 
may occur easily, triggered by existing defects like cracks. On contrast, for the cracked specimen 
made of ferric metals with high magnetic permeability, or the specimen is under an external 
mechanical force and magnetic field, which causes higher “ Ik ” in (28), crack tip melting and 
subsequent thermal induced materials softening may become the more favorite mechanisms. 
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It should be pointed out that PD  in the third row from the bottom of Table IV is obtained 
by “ Ik ” based on the local field solution (16) for the problem II in Fig.4a. When the global field, 
i.e. the problem A or B in Fig. 4 is taken into account, or an external mechanical force is 
imposed, the corresponding value of Ik  will be different. However, the resulted change is only 
quantitatively and basic trend maintains. In order to demonstrate this effect, PD  for 300=Ik  
and 500=Ik , respectively, are also calculated and listed in the last two rows of Table IV.  

 
On other hand, an occurrence of electric-breakdown also depends upon the properties of 

the dielectric medium confined by the crack surfaces of the conductor. This fact is represented by 
the coefficient g~  in (78) which is a function of the parameters β  in (19) and g in Paschen’s law 
(70). These two parameters were obtained empirically through experimental studies in [25, 44]. 
When environment changes, for examples, the humidity of air is high or the crack contains 
different kinds of gas, the values of β  and g can be quite different, which may have remarkable 
effects on the amplitude of PD . 

 
Table IV: Material’s constants (at room temperature) and the comparison factor PD   

 Ag Cu Fe Al 
G( GPa ) 75.8 110 193 62 

Mρ ( 3m
kg

) 
 10500 8960 7870 2700 

Cσ (
m⋅Ω

610
) 

63 59.6 9.93 37.8 

β (
m⋅Ω

810
) 

63 59.6 9.93 37.8 

g(
m

V810
) 

1.1 1.1 1.1 1.1 

Mµ (
m

H710−

) 
4π 4π 300-50000 4π 

fH (
kg

j 510⋅
) 

1.048 2.087 2.437 3.97 

PC (
kgK
j 210⋅

) 
2.35 3.85 4.49 8.97 

PD  

)24.(
2

3
equk I

κ−=  

plane stress 

 
41079.1 ⋅  

  
41002.2 ⋅  

 

 
72.3~1001.8 3⋅  

  
41071.3 ⋅  

 

PD  
( )210*3=Ik  
plane stress 

 
1.08 

 
1.21 

 
41024.2~483.0 −⋅  

 
2.24 

 

PD      
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( )210*5=Ik  
plane stress 

0.5018 0.566 41004.1~225.0 −⋅  1.042 

kg: kilogram mass; m: meter; V: voltage;  t: second,  j: joul;  H: Henry; crack length “a” = 0.02m; 
the values of  β   and g are collected from [25, 44]; all material’s constants are in SI unit.  
 
Remark 1: Ferric metals, such Fe, Ni, and Co, present spontaneous macroscopic magnetic 
ordering at room temperature. Such magnetic ordering can be changed through crystal structure 
distortion or addition alloying [10]. For example, pure iron crystal can be either face centered 
cubic (fcc) or body centered cubic (bcc). The former is a metastable antiferromagnetic structure 
at ground state, which has ordered spin-polarization pair at atomic scale but does not present 
spontaneous magnetic ordering at macroscale. The bcc is a stable ferromagnetic phase at ground 
state. The Neel temperature of fcc iron is about 67K[45], characterizing the loss of microscale 
magnetic ordering of antiferromagnetic phase. The Curie temperature of Fe is about 1043K, by 
which the bcc iron losses its macroscale magnetic ordering. When temperature rises, fcc 
structure will become a stable phase, instead of bcc. Crystal structural changes [60] or tiny alloys 
additions, such carbon[46], may stabilize fcc structure of iron so alter its magnetic properties. 
Plotted in the Figures of Appendix II are the first-principle computations reported in [46] for the 
fcc-bcc transformation, their magnetic moment, and the transition temperature under different 
pressures. These aforementioned research reports explain various reasons to cause diversified 
values of Mµ  for Fe appear in Table IV. .  
 
Remark 2: The concept introduced by (78), i.e. to identify dominant mechanism by comparing 
energy dissipations, is inspired by the methodology introduced in [47], by which the emission of 
dislocations in metal is determined by the path with lower energy barrier between sliding and 
brittle cleavage.  
 
 
6. Conclusions 

This paper studies the mechanisms of crack-induced failure in conducting metals, focused 
on the interaction among magneto-electrical load, thermal and mechanical responses and the 
associated two competing processes: crack tip melting and electric-breakdown. Three issues are 
emphasized: (i) strategies and technique to obtain theoretical solution; (ii) field solutions of 
several key-cracked configurations governed by Maxwell’s equation, momentum conservation 
and heat conduction equation; (iii) physics insight: identify the effects of materials and defect 
geometries on electric-breakdown, melting, and subsequent crack growth, so as to provide 
engineering applicable criteria for material’s selection and design of system under electrical 
loading. 

 
Regarding the first issue, it has been proven that for two-dimensional conductors and 

dielectric solids, the solution to quasi-static Maxwell’s equations can be expressed as an 
analytical function in a complex plane in general. The real part of this analytical function equals 
the electric potential with minus sign and the imaginary part is the product of a constant and the 
magnetic field corresponding to the electrical current field solution, when conductivity is 
constant and Hall effect is omitted since no external magnetic field applies.  
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Three groups of analytical solutions have been obtained, which are (i) Exact solutions of 
electric field, magnetic field, and Lorentz’s force field for a central cracked infinite plane under a 
constant electric current at remote without electric-breakdown at crack tip (Problem A in Fig. 4a); 
(ii) Sharing the analytical technique in dislocation analysis, exact solution of the electric field 
with breakdown has been obtained based on a proposed “modified BCSD model” (Problem B in 
Fig. 4b); and (iii) a solution of the crack tip temperature field based on a proposed melting zone 
model.  

 
The theoretical solutions reveal that the singularity in electric field at sharp crack tip 

leads to a concentration of energy dissipation, which results in localized high temperature, 
electric-breakdown and melting of the material in close vicinity of the tip. When there is no 
external magnetic field and mechanical load, the Lorentz force induced by the magnetic field 
associated with electric current may cause remarkable stress intensity factor, which drives crack 
opening and possible subsequent propagation since either electric-breakdown or energy 
dissipation-induced melting will significantly reduce material’s capacity against crack 
propagation.  

 
In order to quantitatively identify the governing mechanism that triggers crack growth, a 

“capacitance-resistance” circuit (CRC) model is proposed to highlight the physical process at 
crack tip under electrical load (Fig. 9). Enhanced by this model, a “comparison factor” Dp 
defined by equation (78) is proposed to distinguish which mechanisms, breakdown or melting, 
will become dominant around a defect such as a crack tip. This “comparison factor” suggests that 
low magnetic permeability or low conductivity makes electric-breakdown to be a favorite 
mechanism; whereas external mechanical force or the magnetic and electrical loads that causes 
larger crack opening displacement elevate the required break-down voltage so crack tip melting 
and thermally induced softening may dominate subsequent material failure. 
 
 When electric-breakdown is dominant, this analysis indicates that there three patterns of 
breakdown regarding the location where it happens, depending upon crack tip geometry, 
material’s properties, and the level of applied mechanical load. The condition for crack tip 
breakdown, the distance to crack when breakdown occurs away from a crack tip, and the 
threshold of applied electrical load have been obtained analytically, listed in equations (73-77).  
For a mathematically sharp crack, the energy dissipation associated with breakdown has also 
been obtained in equation (38), which is mathematically identical to the J-integral in fracture 
mechanics. So it represents the “fracture toughness” of a material against breakdown induced 
crack growth. 
 

Based on semiclassical theory of conductors the elastic collisions between electron and 
impurities have also been studied.  Solutions for three kinds of impurities: screw dislocation, 
solution misfited atom and an empty, have been obtained under the assumption of diluted 
distribution. The solved mean free path of electron defines a length scale that fixes the 
“threshold” of applied electrical load that causes crack tip melting, defines the applicable domain 
of macroscopic mean field solutions, and provides an estimate of crack tip radius when it is 
unknown.  
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Appendix I: Solutions of Problems II, III in Fig. 4a,b  

According to the method introduced by Mushelishivili [21], the solutions for the problem 
II in Fig. 4a or problem III in Fig. 4b can be derived by the following procedure: 
 
Build the analytical function by electrical potential ϕ and magnetic field H3:  
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According to Cauchy-Riemann’s condition: 
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Notice that i
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, (a2) is proven. 

 
According to Mushelishivili [21]: 
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where ( )zp  is the electrical current imposed on crack surface; ( ) n

nCzCzzCCzP ++++= ...2
2

10  
where the order n and coefficients iC , ni ,...,2,1=  are to be determined according to remote 
boundary condition. The Cauchy integral in (a2) can be solved analytically, see the Appendix of 
[69].  
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Appendix II Feromagnetic and Antiferromagnetic phases of Iron [46] 
 

 
Fig. II-1: Unit cells of fcc (austenite, γ phase) and bcc (ferrite/martensite, α/α' phase) crystal; the 

transformation between them defines “martensitic transformation” 
 

 
(a)      (b) 

Fig. II-2 Quantum mechanical computations of the unit atomic cell during fcc-bcc 
transformation where η  is the order parameter of lattice constant ( :0=η fcc, :1=η bcc). (a) 
changes of system energies; the minimum energy path is the actual path of martensitic 
transformation; (b) variations of magnetic moment per atom.  
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