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Abstract

In material’s selection and design of magnetic transmission system or MEM/NEM device, a
crucial issue is to identify the failure mechanism of a conductor component with defects or a
contact between conductors under a combination of electrical, magnetic, and mechanical loads.
When externally applied mechanical load is very small or vanishes, electric-breakdown and
localized melting, e.g. at a crack tip, caused by resistance induced energy dissipation, are the two
major processes that may lead to failure. In order to quantitatively identify the critical conditions
for these two competing mechanisms, close-formed mean field solutions of conductor plate with
defect in the form of crack have been obtained through solving Maxwell’s equations, momentum
conservation, and heat conduction equation. For two dimensional problems, a general solution of
the magnetic field associated with in-plane electrical current has been derived using conjugate
function. Therefore the corresponding Lorentz’ force and stress intensity factor can be computed
analytically; which have remarkable effects on processes of material’s failure. Under the
framework of the semi-classical theory of metals, mean free path of electron flow and the
interactions between electron and impurities have also been discussed, where the former defines
a length parameter to link macroscale analysis with underlying atomistic physics through
electrical conductivity. The obtained mean field solutions, in conjunction with Paschen law, lead
to the solution of the threshold of applied electrical load at breakdown and associated energy
dissipation; the latter represents the “fracture toughness” under this critical condition. These
solutions also indicate that there three patterns of electrical breakdown regarding the location
where it happens, depending upon crack tip geometry, material’s properties, and the level of
applied mechanical load. The condition for crack tip breakdown, the distance to crack when
breakdown occurs away from a crack tip, and the threshold of applied electrical load have been
obtained analytically. By comparing the energy dissipations of breakdown and crack tip melting,
a “material’s constant” has been derived based on a proposed circuit model to distinguish these
two competing mechanisms, which defines a criterion to predict the dominating process for a
given conductor.

Key words: Lorentz force, magnetic, electric-breakdown, defect, crack, crack growth, failure
mechanism, stress intensity factor, fracture toughness, dislocation, impurity, multi-physics,
length scale, Maxwell equation.



1. Introduction

The theory of electrodynamics indicates that on a concave solid surface, electric-
breakdown may occur if the distance between two adjacent surfaces, such as the two edges of a
crack tip, is smaller than a certain critical value when an electric field is applied [1-3]. For a
dielectric medium containing an elliptical inclusion with different dielectric coefficient, a
quantitative analysis was performed in [4] to obtain critical amplitude of electric field remotely
applied.

A defect in a solid conductor is a geometric discontinuity, which can be an ellipsoid
cavity or a crack containing either a dielectric phase or another conduct with different
conductivity. Although a crack is the extreme case of an ellipsoid, a sharp crack with very small
radius at tip causes extremely high energy concentration [1-2] that highlights the underlying
mechanisms from different scales at localized area, by which the enhanced phenomena may not
be fully covered by ellipsoid’s solution. Experimental evidences indicate that a cracking-induced
material’s failure in a conductor under electromagnetic loading is a process with complicated
underlying mechanisms. Fig. 1 shows an observation of crack growth and melting at the crack tip
under a pulsing electric load [5]. For such a configuration, when a magnetic field simultaneously
presents along the direction not parallel to electric current, the corresponding Lorentz force can
be remarkably high which separates the opposite crack surfaces. A pulse electrical potential
induced skin effect may ionize the surfaces, leading to high electric dipole density near the crack
tip with repulsive London’s force. The combination of London and Lorentz forces, in
conjunction with the possible surface charge-induced Columon’s force, may produce a very high
stress-intensity factor that drives crack to grow. On other hand, an electric-breakdown or high
amplitude of electric current is accompanied with significant energy dissipation, which causes
high temperature gradient within localized area where the material will lose its resistance against
fracture due to thermal softening and melting [5, 6]. Eventually this multi-physics process will
finally end by crack propagation and subsequent structural failure. Hence, it is crucial to obtain
the critical conditions of melting, electric-breakdown, and crack growth in such a defected
conductor, so as to ensure enough safety margin of applied load in machines, devices, and
materials’ designs.

Fig. 1 An observation of the melted crack tip after electric-breakdown [5]



By tracking literatures, e.g. [7-10, 19, 48, 49, 52, 53, 58-65], one can find increasing
interests and accumulated research reports with many successful applications for the problems
coupling mechanical and electromagnetic loads, when electric or magnetic field-induced
displacement causes significant mechanical deformation. A model theory of stress-induced
magnetization for ferromagnetic materials has been developed in [10]. The interaction between
magnetic hysteresis and stress field has been studied in [58,59]. In continuum theory of
piezoelectric and piezomagnetic matters, the mechanical response is usually mathematically
represented through constitutive law, e.g. strain tensor becomes a function of both mechanical
stress and generalized electric and magnetic “stresses”; see e.g. [61,63]. When this kind of
constitutive law is linear, closed-formed theoretical solutions and detailed analysis have been
conducted for various materials with cracked-geometries [11-15, 19, 54, 61-66].

The paper studies the conditions of electric-breakdown and melting of linear elastic
conductor with crack under electrical and magnetic load; whereby the challenges lie in its multi-
physics nature and the nonlinearity associated with Lorentz force, although linear
approximations are made for each individual mechanism. This is because Lorentz force is the
cross product of electric and magnetic fields so the corresponding mechanical equilibrium
condition (moment conservation) is nonlinear for linear elastic solid. When dissipation-induced
melting occurs, the effect of solid-liquid phase transformation has to be taken into account. In
many cases these nonlinearities can be ignorable. However, when geometric discontinuities, such
as cracks, present, the effect of this coupling-induced nonlinear force may become crucial.

The analysis in this paper is presumed under static electrical load. The obtained results
may also be suitable for dynamic problems if the corresponding deformation scale, e.g. crack
opening displacement, is much smaller than the involved time-dependent length scales such as
the wave length of the involved electromagnetic wave [2]. Also, as indicated in [1], when the
electric conductivity and dielectric coefficient are constants, the solution structure of static
electric field for conductors is identical to that for dielectric materials. This is because the both
cases obey the same Laplace equation except at the interface between different materials. Further
more, according to the semi-classical theory of metals [16], the macro-scale conductivity is a
function of mean free path of electron, which defines a length parameter to link mean field
analysis, e.g. Maxwell’s equation’s solutions, to the atomistic physics such as dislocation
mechanisms. By presuming diluted-distributed point defects in the form of screw dislocation and
misfit solution atoms, the asymptotic expression of this length parameter has been studied. It also
defines the lower bound for the applicability of obtained mean-field solutions.

This paper is organized as following: next section introduces the governing equations and
boundary conditions for the problems to be studied in the framework of macroscopic mean-field
theories. Section III introduce a series of two-dimensional solutions which includes three parts: a
general solution of magnetic field associated with any electrical field; electrical field solutions
for crack and hole problems with and without breakdown; and asymptotic solution of Lorentz
force induced stress intensity factor. In Sections IV an asymptotic temperature field solution
including a melting zone around a crack tip has also been derived By comparing energy
dissipations caused by melting and breakdown, a capacitance-resistance circuit model is
proposed to distinguish dominant mechanism. In section V this circuit model, in conjunction



with Paschen’s law, leads to the predictions of a critical condition of breakdown and associated
energy dissipation; the former defines a “threshold” of applied electric field; the latter provides
an estimate of the material’s “fracture toughness” against breakdown-induced failure. Also,
based on the framework of the semiclassical theory of conducting metals, the interactions
between electron transport and three kinds of diluted impurities have been studied, by which an
asymptotic solution of electron free path, the length parameter to link macroscopic solutions and
underlying mechanisms, has been obtained. Finally a dimensionless material constant, defined as
the ratio between the energy dissipations of breakdown and melting, is suggested based on the
obtained analytical solutions; which can be used to predict the dominant failure mechanism of
conduct under electrical magnetic load for a given conductor.

Standard notation is used throughout. The boldface symbols denote tensors; the order of a
tensor is indicated by the context. Plain symbols denote scalars or components of a tensor when a

subscript is attached. Symbol z, represents the coordinate perpendicular to the {x, y} plane in a
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three-dimensional Cartesian system {x, y, z3}, whereas “z” is a complex variable z = x +iy with
i=+—1 . For a complex function F(z)=u(x,y)+iv(x,y) , its conjugate function
F(z)=u(x, y)—iv(x, y). The SI unit is used throughout the text except otherwise specified.

2. Governing Equations, Boundary Conditions and Approximations

Figure 2 is a schematic showing the problem to be analyzed, where a conductor with
electric conductivity o contains an ellipsoid inclusion with dielectric coefficient . In this

diagram, (L and v are Young’s module and Possion’s ratio, respectively; symbols E, J, D, H, B
denote the macroscopic electric field, current density, electric displacement, macroscopic
magnetic field, and magnetic induction field. All symbols and variables associated with the
ellipsoid inclusion are denoted by subscription “1”.

2.1 Lorentz Force, Maxwell’s Equations, Moment Conservation and Heat Conduction

The primary governing equation for the problems studied is the momentum conservation
(force equilibrium condition) at each material point whereby the Lorentz force presents as body
force terms on the right hand side:

0%u
Vo=pp oa=p,(E+v,xB) (1)
ot
where V is differential gradient operator, ¢ is stress tensor, u is deformation displacement

tensor; p, and p, are the free charge density and mess density per unit volume, respectively; v,

m

is the velocity of the electric charge so p,v, =J is current density; E and B are the macroscopic

electric field and magnetic induction field, respectively, determined by Maxwell Equations.
2

or’
electrical force whereas the term p,v, X B =J X B is magnetic force.

Hence, on the right hand side of (1) the term “—p ” represents inertia, the term “p E is



Presently only the time-independent problems are studied whereas the frequency-
dependent problem will be discussed in following research reports. Under this condition, the
Maxwell Equations to be solved are these as below:

L V-B=0
. VxXE=0
. V-D=p, 2

IV. VXH =]

where p, is the density of charge sources. In this study, p, =0, and the following linearized
constitutive relations apply [1, 2]:

D=¢6E (3a)
B =y, H (35)

, and in a conductive material:

J=py, @)
with the Ohm’s Law at each material point:

J=0°E 5

In (3a,b) and (5), the dielectric coefficient € , magnetic permeability x,, , and electric

conductivity o are assumed to be constants. In this analysis, only the magnetic field induced
by electric field is taken into account. Under this condition, the coupling of magnetic field on
electric field, e.g. the Hall effect, is about 3 to 4 orders smaller than the non-coupling parts [11]
and is omitted.

Remark: The constitutive relations between the pair (D, E) and (B, H) are nonlinear for most

materials [1, 2, 16]; the dielectric coefficient and magnetic permeability are tensors in general.
The relations (3a,b) imply the approximations of isotropic magnetic electrical materials leaving
out the effects of (i) magnetic hysteresis; (ii) the coupling between magnetic and electrical fields
(Hall effect); (iii) magnetic and the electrical polarizations on conductor’s surfaces. The studies
about interaction between magnetic hysteresis and mechanical stress field can be found, e.g. in
[58, 59,67]. Introductions about Hall effect can be found, e.g. in [16].

For the linear elastic solid studied in this paper, the stress tensor, ¢, and the displacement

field, u, are correlated each other through the linear Hook’s law under the approximation of
small strain:

c6=C‘:e e=Vu+V'u (6)



where C° is the elastic stiffness tensor.

Heat conduction and the associated temperature field, 7, is governed by Fock’s law:
k,V°T+p, =0 (7)

where p,, is a heat source and k, the thermal conductivity. Heat convection through the surface
is neglected. In this analysis, the Wiedemann-Franz relation applies [16]:

2
k, =30CT("—BJ (8)
2 e

where k, is the Boltzman’s constant, and e =1.60319E —19 Coulumb which is the charge
carried by an electron. (8) gives the relationship between thermal conductivity k, and electric

conductivity o .

2.2 Boundary Conditions
Fig. 2 illustrates a two-body system where a large conductor contains a defect, e.g. an
ellipsoid. As a convention, one may define surface change density p, and surface current

density vector K at the interface between the two materials. As a convention, the outer normal of
interface surface always points to the inclusion, as illustrated in Fig. 2. The corresponding
current and electromagnetic boundary conditions at the interface between the matrix and the
defect read [1,2]:

n-(J-J,)=p; (%a)
n-(H-H)=0, nx(H-H)=K (9b)

where the subscription “1” denotes the quantities in the defect side. Assuming a traction 7 on a
boundary segment denoted as I',, the corresponding force boundary condition reads:

T=no on T (9¢)

t

When a displacement field u is given on a boundary segment denoted as I',, the corresponding
displacement boundary condition reads:

u=u on I (9d)

On the interface between the matrix and the defect:

n-(c—-6,)=0, u—u, =0 (9¢c)



% Tf [ [ [ [[ I, (force is given)

=

[, (displacement
is fixed)
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Fig. 2 A conducting solid body containing a dielectric cavity, where &, i, v are the dielectric

coefficient, Young’s module and Possion’s ratio, respectively. The corresponding interfacial and
boundary conditions are described by (9a-9d).

2.3 Two-dimensional approximations: Plane Strain and Plane Stress

Field solutions of a conductor, such as the matrix material in Fig. 2 under an applied
electric field at remote, are to be studied under the two-dimensional “plane stress” and “plane
strain” approximations, which can be considered as the two extreme cases of three-dimensional
problem, explained as follows:

(1) Plane-strain condition: a plate contains one or more cylinder ellipsoid(s) with their axes
perpendicular to the {x, y} plane that defines the plate; External applied electrical, magnetic,
mechanical force, and displacement fields may act on the plate’s boundaries; all these external
fields are independent of z, , the coordinate perpendicular to plate; they have only the
components within {x, y} plane except magnetic field. When the thickness of the plate is much

greater than the long axis length of these ellipsoids, the middle part along the plate thickness is
under the “plane strain” condition. In addition to the governing equations (1)-(10), “plane strain”
condition is mathematically described by:

J,=E,=0; e =e,=€,=0 (10a)

where J, and E,, respectively, are the components of current and electric field along z,
direction; e,; are the components of strain tensor defined by (6). In (10a) and the following

analysis, both subscripts “z,” and “3” stand for the variables associated with coordinate z,

perpendicular to the {x, y} plane.



(2) Plane-stress condition: all requirements for the plane strain are satisfied except the thickness
of the plate which is so thin that, instead of (10a), the following conditions are met:

J,=E,=0; 0,=0,=0,=0 (10b)

where o, are the components of stress tensor. Additionally, it is assumed that the first-order
derivatives of electric and magnetic fields along z, direction are zero within the plate and no

surface concentration and polarization for any field variables except strain; hence, in the plate the
following relation is applicable:

pyHy = 1 HY (100)

where 47, and H_ are the magnetic permeability in the space out of the plate and the
corresponding magnetic field, respectively.

Under plane stress or plane strain approximation, substituting (10a) or (10b) into
Maxwell’s equation I and IV of (2):

oH oH
M Mo, M g s viH, =VPH =0 (100)
ox dy dy ox

which defines an analytical function H, = H, _+iH , where i is imaginary number: i =v—1. In
this study a further approximation is no external applied fields of H, and H | for the problem
addressed in Fig. 2. Thus, the following trivial solutions is taken in the following analysis:

H =H, =0 (10e)

Hence, the problem to be dealt with can be stated as a plane stress or plane strain infinite
large plate with the constant ¢, 1 and v, which contains a through dielectric cylinder in the
shape of ellipsoid or crack with the coefficients &, 4, and v,, as those illustrated in Fig. 4. In
this study the dielectric cylinder is gas while the plate is metal, so ¢, =0 and v, = 0. The metal

plate contains no free charge or charge source, subjected to a constant uniform electric current at
infinite:

J,=E =0, J = O'CE), =—0cCE~ when /x> +y> > (10f)

For a plate conductor with finite thickness, its mechanical field is somewhere in-between
H,|<<|H, Hy‘ <<|H,| and J,; =0 on the
plate’s surfaces, there is no essential difference between plane stress and plane strain solutions of

magnetic and electrical fields after the effect of magnetic susceptibility is taken into account for
finite thickness.

plane stress and plane strain solutions. When

b



2.4 Definition of “Crack” — Sharp and Blunted Crack Tips

The defect’s geometry in a conductor can be distinguished into two classes, ellipsoids and
cracks. The former can be dielectric inclusion or gas pore; the latter represents a geometric
discontinuity, e.g. separation of grain boundary or other kinds of interfaces. Although
mathematical a crack with sharp tip can be considered as the degenerated case of the ellipsoid,
however, it is difficult to use ellipsoid to describe a long crack with blunted tip, the associated
physical phenomena within the local area around the blunted tip can also be very different.

Experimental observations indicate that crack tips in engineering materials are always
blunted. For a metal that obeys conventional elastic, perfectly-plastic stress-strain law under
plane strain condition, blunting of a sharp crack tip can be quantified by the slip-line field
solutions illustrated in Figs. 3a,b. When remote applied stress o~ is much smaller than the
material’s yield stress, the corresponding stress, strain and deformation in the close vicinity of a
sharp crack tip are described by the Prandtl’s field solution [22, 68] plotted in Fig. 3a. Blunting
appears when o~ increases; the near crack tip field solution is given by the Rice-Johnson-
Prandtl’s field in Fig. 3b; where the sharp tip becomes a semi-circle configuration that connects
to the two parallel crack wedges. The specified solutions obtained in [68] applies for the shaded
area ahead the blunted semi-circle tip in Fig. 3b, which has the similar structure as the slip-line
field around a hole of the radius 7, but is confined by the Prandtl’s field solution presented in Fig.

3a. Although strain-hardening or plane stress condition causes certain deviation, the Rice-
Johnson’s solution in Fig. 3b provides the fundamental information of blunting with associated
analytical strategy to connect near tip field solution (hole solution) with the surrounding small
yield solution. This methodology will also be used for finding the electrical solution of blunted
crack tip in this analysis.

o” o

T [ R B

‘ orthogonal slip-line fields{

o0

blunted tip | o
B

I

(a) o”is very small (b) o " is finite
Fig. 3: The defect’s geometry to be studied: (a) a crack with a mathematically sharp tip; its
stress, strain and displacement fields are characterized by Prandtl slip-line field as plotted; (b) a
crack with a blunted tip represented by the semi-circle of radius r, and two parallel edges; where

the shaded area in the front of the tip is the Rice-Johnson slip-line field [68] surrounded by the
Prandtl field in (a).



3. Solutions of an Infinite Central-Cracked Conductive Plate under Constant Current
3.1 General Solution of Magnetic Field

Under the two-dimensional approximation and boundary conditions given in Section 2.3,
Maxwell equations II and III in (2) can be satisfied by an “electric potential” ¢ :

0 0
Vip=0 d E =—T1  E =——~ 11
14 a ! 0x ? dy (h

Therefore, Maxwell equation IV of (2) yields:

| OH, OH, e

od; %y _99
dy 0z, J. E, ox
_8H3+8Hx =|J, |=0°|E, |=0° _9¢ (12a)
ox 0z, ’ ’ ady
o oH, | L/s E, 0
| dy  ox | L J

Substituting (10a, 10e) or (10b, 10e) into (12a), its first two rows become:

_a_(o: oH, a_go: oH,
ox o9y’ dy oox

(12b)

In the complex plan z where z is defined by z = x + iy, Equation (12b) are the “Cauchy-
Riemann” relations when ¢ and H, form an “analytical function” as following in the domain
where (12b) holds:

F(z)=—(p+iic3 (13)
o

So the relations (12b) and (13) imply:
V2F(z)=0 or Vip=0 and V’H,=0 (14)

which can be stated as: for a plane stress or plane strain boundary-value problem governed by
Maxwell equations (2) under the conditions (10a-10e), its electrical potential ¢ and the magnetic

field H, associated with electrical current are the real and imaginary parts, respectively, of an

analytical function defined by (13). Thus, when one of them is fixed, another can be solved
through the Cauchy-Riemann condition (12b).

3.2 Solutions of Electrical Field with and without Breakdown

When the size of a defect, such as a crack, is much smaller than the size of a plane strain
or plane stress conductor plate, the latter can be simplified as an infinitely large with remote

10



uniform electrical density field £ ; which contains a central-located dielectric crack-shaped
inclusion of length 2a without free charge on its surfaces. Also, under the steady-state
approximation electrical currents stay unchanged during time evolution, which is true only when
the time scale considered is very small.

Considering the two fundamental cases: electrical current bypasses the crack without or

with electric-breakdown near the crack tips when E® is perpendicular to the crack, as illustrated
by the Problem A and Problem B in Fig. 4a and 4b; respectively. For the case with breakdown,
there is an arcing zone with the length A, near the tip, in which a distributed current J, ...

flows from one surface of the crack to its opposite.

The linearity of Maxwell’s equations (2) allows the Problem A to be treated as the
superposition of two sub-problems described in Fig 4a, denoted as problem [/ with solution

{(p’ JH! } and problem /I with {q)” JHY }, respectively. Similarly, the solution of Problem B is the
superposition of problem A and another problem III with the solution {(p”’ JHYI } in Fig. 4b.

Hence, instead of A and B, the issue becomes finding solutions for the relatively simplified cases
I, II, and III. This solution strategy is borrowed from the BCSD (Bilby-Cottrell-Swinden-
Dugdale) model in the dislocation analysis of crack [17, 18]. Introductions of the model, the
general dislocation theory, and applications to crack problems, can be found, e.g. in [27,69].

Applying the complex function method introduced by Mushelishivili [21], the analytical
solutions of the problems 1, /1, I1I, thus, A and B, have been obtained. The main results are listed
below and a brief introduction of the derivations is given in Appendix L.

3.2.1 Problem I: Uniform Field

@' = yE” + const, H3' =x0“E” + const (15)

3.2.2 Problem II: Crack Solution under Surface Current

11

—¢”(z)+iH—3C=—iE°°(z—\/z2—az) (16)

o

3.2.3 Problem A: Crack Solution under Remote Uniform Current
Omitting the constant term, the superposition of (15) and (16) leads to:

H} iZE”
—(I)A(z)+io_—g=—iE°°\/zz—012 and Ef—iEfz% (17)
Z —da

Alternatively, the potential ¢* and electrical density field E* can be respectively expressed in
the following asymptotic forms in the polar coordinate system {r, 8} originated at a crack tip:

o' (r,0)= —sin(ng‘”\/Zar when r—0 (18a)

11



Ef(r,@):E""W/icosg, EA(r,Q):E“’w/ising when r—0 (18b)
2r 2 4 2r 2

Plotted in Fig. 5a is the local magnetic field, i.e. the imaginary part of (16). One sees that
at the two ends of the crack H, reaches its peak values, £ E”0 " a . Plotted in Fig. 5b are the

contours of the electric potential of the problem A, i.e. the real part of (17). The corresponding
amplitudes of electric currents in the x and y directions, respectively, are given in Fig. 5¢ and 5d.

Both of them show singularity at the crack tip, i.e. |x| =a,y=0.

i & a3 % & b § & % % & § gL

E}, — I
—_— — + ’A&::%
2a
Problem A Problem 1 Problem I1
v VvV VY VYV V VY OV : v VvV V V V VY ¥
(a)
§ o g & @ gt SN
J
J brestdonn breakdoin
2a . 2a > Ab [E
2a
Problem B Problem A Problem IIT
2 2 2 2 2 2 T e
(b)

Fig. 4 Modified BSCD-Model — a strategy to obtain electrical field solutions: (a)
Poblem A: which is the superposition of problem [ and /I; (b) Poblem B: which is the
superposition of Poblem A and III , representing electric-breakdown within the small
zone A, near the crack tips.

12
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(b) The iso-valued contours of the total electric potential computed according to (17)
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(d) Amplitude of the electric field in the y direction, which is zero along the line |x| <a,y=0 but

has a singularity at |x| =a,y=0

Fig. 5 Solutions to the plane problems /, /I and A in Fig. 4a.

3.2.4 Problems III and B:
Solution (18b) of Poblem A demostrates a “singular” current at the crack tip. In reality,
when breakdown takes place, electrical current may penetrate the dielectric medium contained

14



by the crack, if this provides an easy path for electrical flow that removes the singular current
field caused by the sharp tip. Mathematically, this breakdown current, J, ... » can be counted

as another electrical load on the crack surface, as described by the problem III in Fig. 4b.
Joarionn has the opposed direction as compared with the surface current load in the Problem II
of Fig. 4a; so it (J,,, ..., ) Induces a singular electrical field but with opposite sign at the crack

tip, which cancels the singularity in the solution (17, 18b). This trade-off provides a condition to
determine the size of breakdown zone A, .

As reported in [25, 26], experimental observations indicate that J, ., can be estimated
by the following empirical relation:

=ﬁ§(t ; = po (19)

|J breakdown

where B is a dimensionless coefficient and B ~100 [25, 26]; &(r) is the distance between two
surfaces of the conductor. For the specimen in Figs.4a,b, 8(r) is the crack opening displacement
between a pair of points on opposite crack surfaces with distance r to the tip, and AV is the
difference in electrical potential between the two points. The solution of &(r) will be given in
the next section and AV, is given by (18a). According to these solutions, the ratio AV, / S(r) is

constant when E~ is fixed. Then, applying the same procedure for Problem /I in Fig. 4a, after
superposition of the solutions, the following electrical potential and magnetic fields of the
Problem B has been obtained:

p+its 2 9By imt10g (20)
(o lo2 2 2 x+d
PR (CY
a’ a’ a’
where C is a complex constant, and
. 28G2 en

kvt E” (aac )2
and A, can be expressed by the following polynomial after a nonlinear regression:

A X X A . GCE”
Dok Bk, Bk, B B= GBE
a

(22)

where

15



ky, =0.1250984,  k,, =—0.00040127, k,, =0.003033 (23)

Plotted in Fig. 6a is the potential drop between the two opposite crack surfaces according to (20)
while in Fig. 6b is the regressive solution of A, expressed by (22).
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Fig. 6 (a) the potential drop between the two opposite crack surfaces according to (20), expressed
o _C
as the dimensionless number

; (b) Regressive solution of arcing zone size A,

3.2.5 Problem C: Solution of Circle Hole
As illustrated by Fig. 3, a long crack with blunted tip can be treated as a notch with two

parallel wedges and ended by a semi-circle hole of diameter r,. The near field solution for a

circle hole in a very large plate has the same structure as that in the local area ahead of a semi-
circled notch tip; where “very large” means that the dimensions of the plate, i.e., its width and
height, are much greater than the radius of the hole. Therefore, this subsection studies the
solution of a circle-shaped dielectric inclusion in an infinite conductor plate, see Fig. 7a.
Although this is another extreme case of ellipsoid inclusion when its short and long axes become
equal, this condition leads to an infinite large radius according to the classical ellipsoid solution
[20].

As a straight-forward application of the procedure applied in the previous subsections,
the corresponding electrical potential ¢ (z)and magnetic field H N (z) have been obtained:

—¢C(z)+iH§C(Z)—=%(agiz)—iagy(z)]+¢(z) (24)

where

16



o= 5|42 ]. v - Sleko)s o] 2

Plotted in Figs. 7b and 7c are the contours of ¢ (z) and H N (z), respectively. The potential drop

between two ends of the hole in the current direction, denoted as AV, yields:

AVy =4E"r, (25)

Remark: (24) and (25) can be verified by substituting z = x +iy, 7 = x —iy into (24a) then (24),
which leads to:

E” x+ yix+2xr,
p=——-|x+ 2 2
2 X" +y

S )

X

oo 2 2 3 2
E :ET|:1+3x +y° +2r, 2(x +y x+2xrb)x:|

E, =E° ny - (x3 +);2x +22;crb)y
Xty (x +y )

where the x coordinate is in the vertical direction of Fig. 7a.

T

(a) (b) @ (e) H &

Fig. 7 (a): Problem C: an infinite large conductor plate containing a circle hole under uniform
electrical field E at remote; (b) and (c): contours of the electrical potential and magnetic field
in the area around the hole.

3.3 Solution of Stress Intensity Factor Caused by Lorentz Force
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In the following analysis, symbol “d” represents unit thickness for both plane stress and
plane strain cases. Under this convention electric current and its density have the same
magnitude but with an implicit difference (square of unit length) in dimension. Hence, for
simplification, symbol “J” can stand for either electric current or electric current density upon
the context of applications.

Recall the equilibrium equation (1): when the magnetic field perpendicular to the plate,
i.e. H,, is taken into account, the first term on the right hand side is a high order small quantity

that can be left out; the corresponding Lorentz force is determined by the second term, presented
as a distributed load p, per unit area “dxdy ” in {x, y} plane:

pe(2)=p.bv, xB)= U x H), =0 p, (E, +iE,)-(,) (26)

where 4,, is the magnetic permeability. According to (15) the amplitude of the magnetic field
H] is proportional to the x-coordinate so it is relatively weak in the area around the crack;

whereas at remote, since E_ vanishes, H 3’ produces the Lorentz force along the direction

parallel to the crack. Therefore the following analysis focuses on the magnetic field solved in
problem IT: H,'.

For a two-dimensional cracked panel like those in Fig. 4 under a mechanical load, e.g.
(26), the corresponding stress field near the crack tip can be expressed by the following
asymptotic formulation in the polar coordinate system {r, 8} originated at the crack tip [22]:

o, = ﬁ K,0,,(0)+ K ,,8,,(6)] @27)

where subscripts “I’” and “II”” refer to mode I and II crack tip fields, corresponding to tension and
shear load, respectively; the detailed expressions of the angular factors ¢, (0), P (0) can be

found in [22]. Then, according to the procedure introduced in [23, 24], the corresponding stress-
intensity factors in (27) are:

. 1 T _

K, -iK, :mij;(pR (Z)CI)I(Z)+ Pr (Z)q)z(z))dx‘ly
s (28)
_ tylacE") Vm g gy
er1) G
and

3—k

k, = S k, =0 (29)
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where K‘=(3—v)/ (1+v) for plane-stress and & =3—4v for plane-strain. The double infinite

integrals in (28) are solved analytically by the conformal mapping z=%(g+l} that
s

transforms the infinitely large conductor plate in Fig.4 into the circle with a unit radius centered
at the origin of the ¢ plane while transforms the crack with length 2a into the rest area of the

plane, as illustrated in Fig. 8. Details of this procedure can be found in [21].

For mechanical boundary value problem, stress field (27) and stress intensity factors (28)
determines the displacement field through (6), the corresponding crack opening displacement
(COD) along the wedges near a mathematically sharp crack tip can also be expressed
asymptotically in the polar coordinate system originated at the tip:

c o \2
5c00(r)zv,(k,@w, B (50) B (308)

" (k+ W27

For a blunted crack illustrated in Figs 3b, the corresponding COD can be expressed as:

8y )= 6, + Sy ) (30b)

the first term on the right hand side of (30b), &, , is the crack tip opening displacement (CTOD)
defined as below:

5 =8,+b0,J (30c)

int

where b, equals I for plane stress and 2 for plane strain [22]; o, is material’s yield strength;

J,. 1s the J-integral [28]:
K2 E plane stress
oo=—D and E'=< E . (30d)
" E " plane strain
-V

where K, is given by (28) and E is Young’s module.

The second term on the right hand side of (30b) is the COD defined by (30a) but r is
replaced by T that is a function of x, the horizontal coordinate in Fig. 3b, and is determined by

the continuing condition of electrical potential between the circle hole solution (25) and the crack
tip solution (18a) at the intersection between the circle tip profile and straight wedge of the crack
in Fig. 3b:

AE”r, =2E~ [2ar, (x) at x=0 (30e)

19



which leads to:
r, =—x+—>"— for x<0 (30f)

For a crack tip without blunting: 7, =r.

1
1]

SN

TN
LY
+
ry [
~—

= <> ['
I=Xx+iy c=U+ilV

Fig. 8 Conformal mapping to obtain integration (28), which transforms the z plane on the left
into the area surrounded by the circle with a unit radius in the ¢ plane on the right, while the

area contained by the crack into the rest area of the ¢ plane, see [21].

4. The Two Competing Failure Mechanisms: Breakdown and Melting

4.1 A Circuit Model for the Two Mechanisms

We study the condition of breakdown based on the solutions (15-18a,b) and (20).
Considering the material point pair (AO, A6) plotted on the left hand side of Fig. 9, which sits on
the opposite surfaces near a crack tip with a potential difference: AV, = ¢, — ¢, according to
(18a) and Fig. 5(b). This potential difference may drive electric current flowing through two
possible ways: bypassing around the crack tip or breaking the dielectrical barrier between A,
and A, by arcing. These two competing mechanisms can be simplified as the capacitance-

resistance circuit model for a given current illustrated on the right-hand side of Fig. 9. When
current goes through the resistance unit that represents the crack tip, the corresponding energy
dissipation can be estimated by:

L dr G1)

2 :
A\Pbypass = R I ‘bepass dr = 2’RC I ‘bepass
r 0

where J, . 18 the current along the path bypassing crack tip; R is electric resistance; 7, is the
distance to crack tip.
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On other hand, when breakdown takes place within the area at the distance equal and less
than 7, the energy dispassion is

r6 AV, 6
A\Pbreakabwn = I IV¢' J breakdowndwr = IAVr ) |J breakdown dr (32)
r; 0 T

where AV is the potential difference at the point on crack surface with the distance r to the tip;
J prearaonn 18 the breakdown current; r; is the distance that no breakdown when r <7;.

Thus, the condition for the occurrence of electric-breakdown can be written as below:

AY

breakdown

<AY

bypass (33)
According to the experimental results, e.g. [5, 6, 25, 26], breakdown is an instant, complex
process by which the voltage induced E field ionizes dielectric medium through exciting
electrons to the orbits with higher energy level which may break the chemical bond to release
more energy and make the dielectric medium be a “conductor”. Once this process occurs, the
corresponding breakdown current reaches its peak value, empirically expressed by (19), within a
short time interval through arcing, followed by subsequent geometric change of the conductor
due to melting. Under the aforementioned short time interval and “steady-state” approximations,
by substituting (18a) and (30) into (19):

25G~2
kvt E- (ao_c )2 ’

(34)

|J breakdown =

which reveals that the amplitude of the breakdown current is approximately constant in the
arcing zone.

According to (18b) the bypass current density yields:

- 6 E" 2a (35)
r

Substituting (34) into (32) and (35) into (31), respectively; and let r; =0 in (32), one obtains:

‘J bypass

3
16 8GA, 2 Jad
A\Pbreakdown = ﬂ : c\2 (36)
3k1 vlrluM (ao- )
and
AY, . = 2k, adR(cCE~ ) llog(n]?” . r, =0 (37)
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where d is the thickness of the specimen; A, is given by (22); k, is a constant with the

dimension of length when J, is current density.

Substituting (22) into (36) and omitting the terms in (22) with the order higher than 2, an
alternative expression of the total energy dispassion at electric-breakdown is obtained:

[SIR¥

e
‘Pbreakdown - (O- )

(E=ayky ){@M]y (38)

9 BG

When the electrical potential and current in (32), respectively, are replaced by displacement and
stress relation, one can find that the resulted equation is identical to the J-integral derived in the
BCSD model in continuum fracture mechanics [28]. Considering breakdown is an onset point
that material losses its capacity against crack growth, ¥, in (32) and (38) represents the

reakdown

“fracture toughness” under this condition.

On contrast, equation (37) suggests the current bypasses induced energy dissipation

proportional to -log|r,, | whereas for a mathematically sharp crack tip r,, approaches zero. This

implies that an electric-breakdown is a natural phenomenon, which can be inevitable under
certain circumstance, e.g. a sharp crack without tip blunting. Consequently, the conditions for
blunting and the corresponding energy dissipation become the objects to be studied hereafter.

Experimental observation [5] indicates that breakdown takes place only when the
intensity of applied electric field reaches a certain critical value. This leads to another question:
what happens at a crack tip when the electric field is below the critical value? There are at least
three possibilities: (i) the crack tip in the tested specimen being initially “blunted”; (ii) the tip is
initially “sharp” but the stress intensity factors (28) induced by Lorentz’ force cause
development of plastic zone in the form of Rice-Johnson-Prandtl’s field (Fig. 3b); according to
(30c,d):

2 5
5 = k, i, (GCE°°)4 byma’ o, (39)
2(x+1) E'
so in (37) 1, =06, which removes the singularity; however, since o, is proportional to

(Gy i, )/ E, its absolute value is very small and the integral (37) can still be considerable high;
(iii) the last possibility is that the energy dissipation associated with the singular electric field
(18b) is transformed into thermal vibrations with localized high temperature field, which “melts”
the sharp crack tip into a blunted “hole”. Since (31) and (37) are very simplified estimates, the
following subsection develops a more precise solution of the temperature field around a crack tip.
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Fig. 9 Models for breakdown analysis: (a) A circle model that represents two competing
mechanisms around a crack tip: the current breaks through the capacitance unit A,A, or goes

around the crack tip resistance

4.2 Temperature Field Solution - Thermal Dissipation Analysis

The asymptotic behavior of the temperature field near a crack tip before breakdown is
investigated, presuming the field to be governed by the heat-conduction equation (7), which is
consistent with the previous stated “steady-state” approximation within small time interval; so all
corresponding solutions are “rate” independent. Also it is assume the heat conduction coefficient
and electrical resistivity are constants. Then the electrical field solutions of cracks obtained in
previous section are applicable except in the very small area just ahead blunted tip. According to
(17) the energy dissipation per unit area; which defines the heat source density p,, in (7), yields:

o)

where J is the current density; R is the resistivity, and R, = l/ o°.

pu =R =oC(E"] (40)

By substituting the asymptotic expression (18b) into (40) then into (7), the governing
equation of heat conduction in the polar coordinate system originated at the crack tip reads:

V)
VZT:EM+0(1’I) for r<<a “4n
r

2k,

which leads to the following temperature field solution:
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T = (Ew) o (L_Cl(log[£j+i0j—C{log[ij—iﬁj+c3] (42)
2k, a a a

where the C,, C,, and C, are real constants. Removing the imaginary part of (42) leads to a

constraint to its coefficients: C; = C, = C which cancels the terms with angle 6.

M )

Y
% > }"

melting zone

Fig. 10 An “asymptotic” two-phase model for the temperature field near a crack tip;

For most metal-based conductors, melting is the process that crystals loss their long-
range periodic orders. According to the analysis in [29, 30], at the temperature just above melting
point (7}, ), liquid metals usually present as amorphous structure (one-dimensional quasi-crystal)
which segregate into particles in the size 2-10nms with weak connection between each other. A
direct consequence is that the material loss stiffness against deformation. Any mechanical load,
e.g. Lorentz’ force (26,27), drives a viscostic-like flow in the melting zone and cause the tip
blunting, as described by the Rice-Johnson-Prandtl field in Fig. 3b. Thus, a two-phase model of a
solid crack panel with crack tip melting zone, as illustrated in Fig. 10, is introduced to describe
these phenomena approximately. At the border between the solid conductor and the melting zone
the temperature must be the solid-liquid phase transformation temperature, denoted as 7, .

Obviously melting is a dynamic process. Once electrical load applies to a cracked
conductor, the material near the sharp crack tip starts to melt due to the high amplitude of current
and associated energy dissipation concentration. This concentration causes continuing expansion
of the melting zone until it reaches a relatively stable state after the electrical resistance induced
dissipation balances the extra energy exhausted by the capacity heat to warm up the material and
latent heat of phase transformation. This process can be described by the following two stages,
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characterized by the quantity d,, the heat flow that passes through the solid-liquid boundary at

r=r,:

Stage I: warm up in the time interval 0 <r < At the initial material temperature is 7, :

At2rm At27ry
[[opragar=[]| [RC|J|2 —p.kolc, +cSp(T—T0)]}drdet (43a)
00 00

where r,, is moving; at r =r,, :

S T

o T=T
© or

v R =pkle, v, @, -, (43b)

2
r=ry

In (43a,b) j . 1 the current density at the solid-liquid border; C f is the solid conductor’s fusion
enthalpy per unit mass, i.e. the energy absorbed during solid-liquid phase transformation; c,, is
the heat capacity of solid conductor; p, is mass density and k,, is a unit constant but with the

dimension of 1/ (1/second). Thus, product C, p,, is the latent heat per unit volume

Stage II: steady state (¢ = At):

27

[ ﬂRc I parae (44a)

0 n

2r
jagm’H:
0

where r,, is constant; at r =1, :

a:aT

0= T=T,.  R|T.[ =p.klc, +e,@, -1, (44b)

Under the aforementioned approximations, in stage Il the temperature fields of both the melting

zone and solid phase obey (42). Using the first two relations of (44b) to fix the constants C and
C; in (42), it becomes:

V2 _C
2k, a a a

Lﬂ -9, log(L] a>>r>r, (44c)
T T

M M
where 7, is given by (39).

Also, according to (18b) at r=r,, :
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- 2
|’ :‘jM‘z :Mi, (45)
2 Ty

For simplification, the case that ¢ AT << C, at T =T,, is considered, so the second term in the

last equation of (44b) can be omitted. By combining it with (45) an estimate of r,,, the size of
the melting zone, is obtained:

(=Y o€ 4= (E=Y oCa

= = (46a)
2p,k,(C, +c, AT)" ~ 2p,k,C,

rM
m

which leads to a threshold of remote electrical field intensity for melting:

- f 2r,p,k,C f
Emelting = T (46b)

It indicates that for a mathematically sharp crack tip (7, = 0) melting will take place once E” is
nonzero but it will have a finite value if 7, >0. It will be a straightforward to obtain r,, and
o

melting

when ¢ AT is also taken into account.

Therefore, the energy dissipation that creates the melting zone yields

= AdeC zﬂ \J|*rdrd6 = AR (6 E” ) [r,, —1,] (47)
0

0n

AY

melt

where r,, is given by (46). It is reasonable to further assume that the energy consumption in the

melting zone is much greater than that in the solid phase due to latent heat; then after taking At
be unit time the equation (37) can be rewritten in the form as:

AP ~7xr,dR (6 E") 48)

bypass

=AY

melt

5. The Threshold of Applied Electric Field Intensity for Breakdown and Melting

The crack problems solved in the previous sections were discussed in the framework of
macroscopic mean-field theories. Solution (46) indicates that a melting zone will occur at a sharp
crack tip once E” is nonzero, whereby the following questions are raised:

- What is the length scale that defines the applicability of the obtained solutions, since the
governing equations (1-8) are under “mean field” approximation and the macro scale-
sized cracks are considered?

- How to justify the effects of small-sized defects at atomic scale?
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Focused on these questions, in this section we study the interaction between atomistic-sized
impurities and electronic transportation under the framework of semiclassical theory of
conduction in metals, establishing quantitative linkage from submicro and quantum physics to
the derived mean field theory-based solutions, so as to obtain engineering applicable criteria for
the two competing failure mechanisms: breakdown and melting. The introduction of the
semiclassical theory can be found, e.g. in [16, 31]. The discussions about fracture toughness and
the length scale in mechanical analysis can be found in [4, 28, 32-36].

5.1 Microscale defects and A Length Parameter that Bridges Solutions from Different
Scales
5.1.1 About the Ohm’s law

It is well-known that micro and nano scaled defects, such as dislocations and impurities,
have significant effects on material’s mechanical properties. This subsection studies their effects
on electron transportation process and material’s conductivity. According to the framework of
the “semiclassical theory of conduction in metal” [16]: in electric current flow all electrons stay
in a fixed, not fully occupied, conduct band without inter-band transportation. Electric resistance
is essentially the subsequent result of collisions between electron and electron, electron and
lattice imperfection, and, electron and nuclei thermal vibration (phonon). For ideal conductive
metal there will be no such collisions. The average time between two collisions defines
“relaxation time”, denoted as “7,”. Electric current density is an average of the product between

the velocity of electron defined in k space, v(k), and the deviation of charge distribution
function from equilibrium state Ag :

j=—¢| 4CZ_€3v(k)Ag (49)

where

Ag = —¢E v(k)z, (c, )w (50)

n

where €, (k) is the energy associated with electron e at n™ band, which is a function of the

moment vector k in reciprocal space, and f (&) is the Fermi-Dirac function of energy distribution.

Hence, electric conductivity o

bands:

is a tensor that sums the contribution from all n conducting

‘=] 4f['§h r(en)v(k)v(k)w (51)

n

When Hall’s effect is omitted, only one conduct band is taken into account and isotropic
approximation applies, (51) degenerated to the classical expression in Drude’s theory:

o€ = nezr(gF)

m

(52)
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where n and m denote the density and mass of electrons, respectively; &, is Fermi’s energy.

It is well-known that, by assuming the same relaxation time for both electric flow and
heat conduction, the “mean free path” / , i.e. the average distance that a conduction electron

m?

travels between two collisions, is the product of Fermi velocity, v,., and 7,:
[, =v.T, (53)

Obviously the “mean free path” [ in (53) characterizes the space that restricts the motion of

m

each single electron, which can be used as the smallest size of ‘“cell” to define the average
behavior of electrons in mean field theory if 7, is known. By omitting the electron-electron

interaction, since it becomes significant only under very low temperature, the effective relaxation
time can be expressed as the geometrical average of that for electron-phonon interaction, denoted

as 7, ,, and that for electron-imperfection interaction, 7, ;. According to Matthiessen’s rule:

S . (54)
3
The Block’s T law indicates that 7,_ , 18 proportional to (%) if temperature 7 (Kervin) is

much smaller than Derby temperature ®, . When T is the same order or larger than ®, the
following relation is suggested in appendix J of [31] for electron-phonon interaction:

1 K’m*k,k,T

3
Tefp mspmh

(55)

where K, k,, and ¢ denote volumetric Young’s module, Boltzmen’s constant and the speed of

light, respectively; k, is the radius of Fermi surface in reciprocal space, and m* is the
equivalent mass of electron.

5.1.2. Electron-Imperities Interaction
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Fig. 11 Three impurities studied which causes electric resistance: (a) screw dislocation; (b)
misfitted solution atoms; (c) empties.

Hence, a particularly interests is given to electron-impurities interaction in this study.
Three kinds of common impurities are taken into account: screw dislocation core, empty and
solution atoms, as illustrated in Fig. 11. According to the first-order perturbation theory, e.g. [31,
37, 38] and recently [39, 40], a crystal lattice elastic strain causes change of the effective
potential in the Hamiltonian to the electron wave functions, which yields:

AU(r)=Vr:oU

where dU refers to a parameter associated with “deformed potential”, which is an integration of
lattice distortion-induced strain energy over certain length scales. By the approximation of
“dilute distribution” for an impurity that sits at the origin, dU is taken as the derivative of
deformation energy with respect to deformation gradient; then for linear elastic small lattice
deformation AU (r) can be approximated by the total deformation energy caused by an impurity.

Hence, for an electron at the band with index n, according to the semi-classical theory
the relaxation time can be expressed as below:

(k)_ o(k)_ oy ~ ~ - _
) Tei(i) =] (2z) Wl Y001 - (€ )~ g Y1 - g k)t (56)

where n,, ~is the number of impurities per unit volume; g(k) is distribution function of electron

with current flow and g, (k) is that at equilibrium condition; W(k,l; ) is the scattering function:
Wk, i )= 27”5(5(12 )~ &)kl aU >r (56a)

where 7 is Planck’s constant, and,
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N )=[drg  (r)AU (), (r) (56b)

where ¥, (r) is normalized plane wave function corresponding to momentum k with band index
n and (56b) is the element matrix, e.g. defined in [38]. As introduced in [41], varies methods can
be used to calculate AU(r). In this study the continuum lattice elastic theory is employed. Then,
according to the analysis, e.g. [69, 27], AU (r) for line screw dislocation is available. Also, the
Eshelby’s eigen-strain method [42] provides the way to obtain the approximated solutions of
AU(r) for diluted empty and misfit atom. In general,

AU,.(r)zé, LY (57)
r 2

where the subscription i =1,2,3 stands for screw dislocations, misfit solution atom, and single
empty site, respectively; and n, =1, n, =n, =3 the values of the coefficient A, are listed in
Table 1. The potential well defined by (57) are essentially applicable up to infinite. For the

convenience of analysis, the cut-off radius ’l-im_oﬁ is defined by
i b
Al]i (rcuz—nﬂ ) = acuzfoﬂAUi (Ej (573.)

where @, . is an ad hoc coefficient that must be much smaller than unit; since AU, (r) is fast

degenerated function when r increases and its contribution can be omitted when r>r;, .. In
order to be consistent with the convention in statistic analysis, in this study ¢, . =0.03 is

taken.

Table 1: Coefficients of (57)

screw dislocation ?;lb“
s
misfit solution atom ~ 197°Gb°(1-M,)
12(1 + i M G]

empty site Gr’b°®

105
where
M, = % , M,= %

where G, and b, are the bulk Young’s module and Burger’s vector for the solution atom.
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In this paper the following additional assumptions have been adopted for obtaining the
analytical solutions of the relaxation time:

1) Sphere Fermi surface with the radius &, = k,, ; consequently:
4 k ~\ ~
[ L"g)w(k,kl ke =0 (57)
(27)

where k | is the component of k perpendicular to k, see Fig. 12.

k

~k,

Fig. 12 Eq.(57) implies the equal-probability for the collisions
k , and — k L.

(i1) Quasi-isotropic charge distribution [16]:

glk)=g,(k)+alk) k (58)

(iii))  Generalized Matthiessen’s rule: additive summation for three different impurities for
the scattering function in (57):

Wl )= el )- et

(k|av J& >“ (59)

(iv)  Only the closed neighbor atoms to the impurity site are taken into account, so:
<k|U|i€> = Z J. 1/7,1]: (r - rﬁ )AU(r )l//nk (r — Ty )dr ’ ‘rﬁ‘ < ’:‘m—oﬁ > |rR| < rcut—nﬂ

(v) The probability of Umklapp scattering is ignorable as compared with other
mechanisms.

(vi)  Under the assumptions mentioned above, the following relation is applicable
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2
del(k) = %k -dk (60)

e

, so there will be no difference between mass and equivalent mass of electron;
in (60), m,=9.11-107' (kg); % : Planck’s constant % =6.6262-10"* (j-1).

(vii)  Classical expression of Fermi velocity

V= (;]k F (meter/second) 61

The values of the material’s constants appear in the equations in this subsection are listed in
Table II. Applying the approximations and omitting high order small quantities, the dominant

terms in the solutions of (56) are:

25610g(b/2)mGb*r ;
1 — og(/ )m Veur—ofy [r“”‘oﬁ }{1+O( ! H (62a)

Totecron-isio K ) 590497°h’k a,’ d; (k,a,)
18496m(A, Y s\ |
1 — m( 2) rcutf(;jz r;m;()ﬁ 1+0 1 . (62b)
Toecron-aon ki) 430467210°k}a,” | d; (k,d, )
18496m(A. ) r? s |
1 — m( 3) rcut—tijg rcut—;ﬂ 1+O 1 . (62C)
Teleczmn—empzy (kF) 430467217’13](;610 di (kfdt )

where a,: Bohr’s radius, a,= 0.5292(A); d; is the average distance between impurities and the

following relation has been applied:

! 63)

n__=—
imp 3
d;

Remark: For the N-ion crystal with the impurities in the form of vacancy(empty), the
thermodynamic estimate of the number of vacant site is [16]:

nvac = N eXp(— aogf)
where ¢, is a constant. More advanced discussions can be found, e.g. in [50-53].

By substituting (62a,b,c) into (53), one finds that for all three kinds of impurities the
mean free path yields:
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3
di
3
rcutfnﬁ‘

[ o<b (64)

For example, after substituting the material’s constants of iron in Table II into (62a) and (53),
one obtains:

L 4“12 d, @, =1.08-107° (1/m*) (652)
T

7’.electron—dislo

and
I ~an’d?, o, =7.25-10" (1/m?) (65b)

When the average distance between screw dislocation lines is 50nm, i.e. d =5- 10 m, then
[ =633nm (66)

i.e. [ is around a micron, which is a reasonable length scale to define the lower bound of mean

field theory. However, a paradox exists since (65b) implies that the mean free path can be
infinite large when the density of impurities is zero; the corresponding conductivity also
becomes infinite. Since impurities always exist in real metal crystals and most metal conductors
are polycrystalline, grain boundary can be considered as an upper bound of mean free path.
Hence, this study suggests the following estimate:

L = min{lm .d, 1 d, : average size of grains (67)

to be the length scale that defines the availability of mean field theory. Replacing the r,, in (46)
by L, , we obtain an estimate of the intensity of applied electric field to initiate “melting” at a
sharp crack tip:

o 2Lm IOmC k
Emelt = C L2 (68)
V ao

Table II: Material’s constants[16] applied in the equations (56-63)

Ag Cu Fe Al
G(GPa) 75.8 110 193 62
1 1.2 1.36 1.714 1.745
kr (20
10°m 1.3925 1.573 1.981 2.029
Ve ( ; )

where kg: kilogram mass; m: meter; t: second; j: joul; A: angstrom.
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5.2 Paschen Law and Threshold of Applied Electrical Load

The “semi-classical theory” applied in the previous subsection fails when interband
transportation of electrons, i.e. breakdown between electron orbits, takes place, which may
results in formation of new interatomic bands or ionization of atoms when electrons become free,
resulted in the release of chemical bonding energy. A macroscopic breakdown as shown in Fig. 1
usually is the subsequent result of the applied voltage-induced ionization of the dielectric
medium filled in the crack. This complex process can be phenomenologically described by the
Paschen law [43]. This empirical law indicates that the occurrence of electric-breakdown is
determined by the gap width between two electrodes and the voltage difference inbetween;
where the latter can be expressed by a function (generally not linear) of the product of the
pressure, p, of the dielectric medium and the gap, .

AVbreakdown = f(d’ p) (69)

For gas, the pressure should be replaced by the gas density. For the problem addressed in Figs.1-
4, the opposite crack surfaces work as two electrodes with the potential difference given by (18a),
so the gap width ois the crack opening displacement defined by (30a,b). When dis much smaller
than a millimeter, recent study [44] suggested the following expression:

AV,

breakdown

=go (70)
where g is a constant in the order of 102(V/u) when ¢ is in the unit of micron ().

As an electrical field is always accompanied with magnetic field that causes Lorentz’
force and corresponding crack opening, a question is whether this crack opening displacement
plays can be used in (70) since electrical current and magnetic wave travel with the speed of light
whereas propagation of deformation is limited by the speed of elastic wave; so a breakdown and
subsequent material failure may occur before crack opens. Experiments indicate that the process
of electrical breakdown usually lasts longer than millisecond; the time scale for this process is
strongly dependent upon environment temperature but generally is enough for an elastic
deformation. This class of phenomena is generally termed “time-dependent dielectric
breakdown”(TDDB)[70,71]. Thus, in this study, it is presumed that the Lorentz’ force induced
crack opening defined by (30a,b) occurs before breakdown induced material’s failure.

As plotted in Fig. 5b, the voltage difference has the maximum value at the center of a
crack while degenerates to zero at a sharp crack tip where the separation is also zero. Thus, as
illustrated in Fig. 13 for a conductor crack or a contact between two conductors there are at least
three breakdown patterns, depending upon the distribution of voltage difference and profiles of
crack opening displacement and/or contact surfaces. In the follows the solutions of electrical
potential (17, 18a) and COD given by (30a-e) are used to identify which pattern will happen in
reality and to find the corresponding critical value of E™ at breakdown; the latter defines the

threshold of electrical load, denoted as E,”

breakdown *
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Fig. 13 Three patterns of electric-breakdown: (a) with a distance to crack tip; (b) at crack tip; (c)
within a localized area away from the tip; where the contours are electrical potential. Occurrence
of actual pattern depends upon crack opening profile and electrical potential distribution, which
are the functions of crack geometry, level of applied load, material’s electrical, magnetic and
mechanical properties.

Starting at the configuration illustrated in Figs 3b, the J in (70) is given by (30a,b):

iy )= 6, + 8oy (30b)
and
4(E°° )2 '\/ rrefa 2G
S )= d = (30a)
o (rﬂ ) A . A vk ty (a o€ )2 )

According to (18a) and (25), the electrical potential drop between the two opposite surfaces
yields:

AV = £ (4, + 2,27 a) (71)

When the crack tip initial radius is much greater than the deformation-induced radius increase,
i.e., omitting the second term of (30c); then, o, = r, . By substitute (30b) into the right hand side

of (70) while (71) into its left hand side, the E,, ., is the root of E” for the resulted equation:
2
HNE”) |10
E*(4r, +2.2ra)-| 5, +UT’4 g=0 (72)

For a crack with sharp tip: r, =0 and r,; = r, the non-trivial solution of (72) is:

=

A
E reakdown —= (73)
breakd g\/E
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Therefore, under this situation the breakdown will take place once E” > E,.
crack tip, as illustrated in the Fig. 13(b).

starting at

breakdown

For r, >0, the non-trivial solution of (72) yields:

- A 2 2g°r, _, 25 o
E reakdown = 1 + r (74)
e 222 ’ “reﬁ ona”eﬂ N \/
2(rh )2

By substituting (30f), i.e. r,, =—x+ , into (74), E, is the solution satisfying the

reakdown

a
following condition where x is defined in Fig.3b:

=3 2 oo
aEhreakdown =0, aEbrw >0 (753)
ox ox’

Since the first two terms of (74) are monotonic to 7, , instead of solving the first relation of (75),

the minimum of (74) can be obtained by the minimum of its third term:

9E _g and E, 28°r, 21, { £ } (75b)

o Ty g (g

which leads to

— r_b2 Al (Al — 2\/5) and Al — g_2 — v;ckI/uM (aGCg)Z

o a (Al _\/5)2 A ) 26

(76)

By varying the material’s constant A, there will be two cases: (1) A, >242 so x20;
breakdown occurs in the circle-shaped crack tip, corresponding to the case illustrated in Fig.
13(b); (11) A, < 22 s0 x <0; breakdown occurs in the area with a distance Tyveardonn 1O the crack

tip, as illustrated in Fig. 13(a); the 7, ..., yields:

— ”_b2 A (Al — 2\/5)

r =r +
breakdown b 2
4 (Al - \/5)

(77)

5.3 Breakdown or Melting ? A Derived Material’s Constant to Identify the Governing
Mechanism

36



=

Relationship (68) gives E
threshold at breakdown. For engineering material there will be three different cases: (i)

at onset of crack tip melting whereas (73,74) predicts the

melt

E; iown < E- . . breakdown dominates the material’s failure process when applied electrical
load E*<E S, and E”2E, .. (1) E, tim > Erp @ crack tip melting zone-induced

thermosoftening and subsequent crack propagation may present once E.  <E” ; (i)

e
E breakdown = E melt

: both mechanisms may occur simultaneously.
Further more a practical question is: when an electrical load E” > max(E b eakdonm > E;’eh) is

imposed to a conductor with crack, which process, melting or breakdown, will govern the
material’s failure? In order to identify the dominant mechanism under this situation for an
engineering material, a “comparison factor” is introduced as below:

A‘vapass
D,=—"r (78)
A‘Ilbreala]!owm
where ¥, s, 18 defined by (38) and AY, by (48) in which the r,, is defined by (46); also
E” =E, . defined by (73) is applied in this relation. Table III lists the values of the

dimensionless constant coefficients presented in (38, 46, 48, 73).

Table III:

v (Possion’s Ratio) K v, k, ki, kg,

0.3 B-v)/+v) | 0.1815 3-x)/2 1 | 0.12509

Obviously, when D, defined by (78) is greater than unit, electrical breakdown dominates
whereas the melting mechanisms takes over when D, <1, which provides a hint for the design

of materials or devices with desirable dominant mechanism. This is because, in contact systems
made of conductors, the mechanical, electrical, and temperature fields near the edges between
two contact surfaces essentially have the same structures as that near a crack tip [48, 49, 55-57].

Listed in Table IV are the material constants of four common used conducting metals and
the corresponding values of D, . In the second row from the bottom one finds D, >1 for the

three nonferric metals (Ag, Cu, Al) as well as for the iron at the low ferric end; whereas D, <1
for the iron at high ferric end. This is because higher permeability x,, results in larger Lorentz’s

force through equ.(20), which leads to larger crack opening displacement as indicated by (30)
and, subsequently, requires higher voltage at breakdown according to Paschen’s law (70). Hence,
one may conclude that for a cracked specimen made of low ferric metals, electric-breakdown
may occur easily, triggered by existing defects like cracks. On contrast, for the cracked specimen
made of ferric metals with high magnetic permeability, or the specimen is under an external
mechanical force and magnetic field, which causes higher “k,” in (28), crack tip melting and

subsequent thermal induced materials softening may become the more favorite mechanisms.
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It should be pointed out that D, in the third row from the bottom of Table IV is obtained
by “k,” based on the local field solution (16) for the problem /I in Fig.4a. When the global field,
i.e. the problem A or B in Fig. 4 is taken into account, or an external mechanical force is
imposed, the corresponding value of k, will be different. However, the resulted change is only
quantitatively and basic trend maintains. In order to demonstrate this effect, D, for k, =300
and k, =500, respectively, are also calculated and listed in the last two rows of Table IV.

On other hand, an occurrence of electric-breakdown also depends upon the properties of
the dielectric medium confined by the crack surfaces of the conductor. This fact is represented by
the coefficient g in (78) which is a function of the parameters £ in (19) and g in Paschen’s law
(70). These two parameters were obtained empirically through experimental studies in [25, 44].
When environment changes, for examples, the humidity of air is high or the crack contains
different kinds of gas, the values of B and g can be quite different, which may have remarkable

effects on the amplitude of D, .

Table IV: Material’s constants (at room temperature) and the comparison factor D,

Ag Cu Fe Al
G(GPa) 75.8 110 193 62
kg 10500 8960 7870 2700
Pu (W )
6 63 59.6 9.93 37.8
Q-m
10® 63 59.6 9.93 37.8
B )
Q-m
108V 1.1 1.1 1.1 1.1
&( )
107"H 4 4 300-50000 47
M ( )
i.10° 1.048 2.087 2.437 3.97
H, (=)
kg
102 2.35 3.85 4.49 8.97
Cp(L=2)
kgK
DP
3
k=37 K equaay | 179100 | 202.100 | BOMIOS3T2 55000
2
plane stress
DP
(k1 -3 *102) 1.08 1.21 0483 ~2.24-10* 2.24
plane stress
DP
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(k, =5%10) 0.5018 0.566 0.225 ~1.04-10" 1.042
plane stress

kg: kilogram mass; m: meter; V: voltage; t: second, j: joul; H: Henry; crack length “a” = 0.02m;
the values of £ and g are collected from [25, 44]; all material’s constants are in SI unit.

Remark 1: Ferric metals, such Fe, Ni, and Co, present spontaneous macroscopic magnetic
ordering at room temperature. Such magnetic ordering can be changed through crystal structure
distortion or addition alloying [10]. For example, pure iron crystal can be either face centered
cubic (fcc) or body centered cubic (bcc). The former is a metastable antiferromagnetic structure
at ground state, which has ordered spin-polarization pair at atomic scale but does not present
spontaneous magnetic ordering at macroscale. The bcc is a stable ferromagnetic phase at ground
state. The Neel temperature of fcc iron is about 67K[45], characterizing the loss of microscale
magnetic ordering of antiferromagnetic phase. The Curie temperature of Fe is about 1043K, by
which the bcc iron losses its macroscale magnetic ordering. When temperature rises, fcc
structure will become a stable phase, instead of bcc. Crystal structural changes [60] or tiny alloys
additions, such carbon[46], may stabilize fcc structure of iron so alter its magnetic properties.
Plotted in the Figures of Appendix II are the first-principle computations reported in [46] for the
fcc-bee transformation, their magnetic moment, and the transition temperature under different
pressures. These aforementioned research reports explain various reasons to cause diversified
values of u,, for Fe appear in Table IV. .

Remark 2: The concept introduced by (78), i.e. to identify dominant mechanism by comparing
energy dissipations, is inspired by the methodology introduced in [47], by which the emission of
dislocations in metal is determined by the path with lower energy barrier between sliding and
brittle cleavage.

6. Conclusions

This paper studies the mechanisms of crack-induced failure in conducting metals, focused
on the interaction among magneto-electrical load, thermal and mechanical responses and the
associated two competing processes: crack tip melting and electric-breakdown. Three issues are
emphasized: (i) strategies and technique to obtain theoretical solution; (ii) field solutions of
several key-cracked configurations governed by Maxwell’s equation, momentum conservation
and heat conduction equation; (iii) physics insight: identify the effects of materials and defect
geometries on electric-breakdown, melting, and subsequent crack growth, so as to provide
engineering applicable criteria for material’s selection and design of system under electrical
loading.

Regarding the first issue, it has been proven that for two-dimensional conductors and
dielectric solids, the solution to quasi-static Maxwell’s equations can be expressed as an
analytical function in a complex plane in general. The real part of this analytical function equals
the electric potential with minus sign and the imaginary part is the product of a constant and the
magnetic field corresponding to the electrical current field solution, when conductivity is
constant and Hall effect is omitted since no external magnetic field applies.
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Three groups of analytical solutions have been obtained, which are (i) Exact solutions of
electric field, magnetic field, and Lorentz’s force field for a central cracked infinite plane under a
constant electric current at remote without electric-breakdown at crack tip (Problem A in Fig. 4a);
(i1) Sharing the analytical technique in dislocation analysis, exact solution of the electric field
with breakdown has been obtained based on a proposed “modified BCSD model” (Problem B in
Fig. 4b); and (iii) a solution of the crack tip temperature field based on a proposed melting zone
model.

The theoretical solutions reveal that the singularity in electric field at sharp crack tip
leads to a concentration of energy dissipation, which results in localized high temperature,
electric-breakdown and melting of the material in close vicinity of the tip. When there is no
external magnetic field and mechanical load, the Lorentz force induced by the magnetic field
associated with electric current may cause remarkable stress intensity factor, which drives crack
opening and possible subsequent propagation since either electric-breakdown or energy
dissipation-induced melting will significantly reduce material’s capacity against crack
propagation.

In order to quantitatively identify the governing mechanism that triggers crack growth, a
“capacitance-resistance” circuit (CRC) model is proposed to highlight the physical process at
crack tip under electrical load (Fig. 9). Enhanced by this model, a “comparison factor” D,
defined by equation (78) is proposed to distinguish which mechanisms, breakdown or melting,
will become dominant around a defect such as a crack tip. This “comparison factor” suggests that
low magnetic permeability or low conductivity makes electric-breakdown to be a favorite
mechanism; whereas external mechanical force or the magnetic and electrical loads that causes
larger crack opening displacement elevate the required break-down voltage so crack tip melting
and thermally induced softening may dominate subsequent material failure.

When electric-breakdown is dominant, this analysis indicates that there three patterns of
breakdown regarding the location where it happens, depending upon crack tip geometry,
material’s properties, and the level of applied mechanical load. The condition for crack tip
breakdown, the distance to crack when breakdown occurs away from a crack tip, and the
threshold of applied electrical load have been obtained analytically, listed in equations (73-77).
For a mathematically sharp crack, the energy dissipation associated with breakdown has also
been obtained in equation (38), which is mathematically identical to the J-integral in fracture
mechanics. So it represents the “fracture toughness” of a material against breakdown induced
crack growth.

Based on semiclassical theory of conductors the elastic collisions between electron and
impurities have also been studied. Solutions for three kinds of impurities: screw dislocation,
solution misfited atom and an empty, have been obtained under the assumption of diluted
distribution. The solved mean free path of electron defines a length scale that fixes the
“threshold” of applied electrical load that causes crack tip melting, defines the applicable domain
of macroscopic mean field solutions, and provides an estimate of crack tip radius when it is
unknown.
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Appendix I: Solutions of Problems II, III in Fig. 4a,b
According to the method introduced by Mushelishivili [21], the solutions for the problem
IT in Fig. 4a or problem III in Fig. 4b can be derived by the following procedure:

Build the analytical function by electrical potential ¢ and magnetic field H;:
.H
F(Z)=—¢+10—2, (al)

Its derivative is electrical field:

dF(z)
dz

=E, —iE, (a2)

because

dF(z):[dF(z)} 7 :[dF_(z)} )

dz dz dz
and
{dF(z)} __d¢ . OH, {dF(z)} _ 99, OH,
dz e ox  oox’ dz Jyy 10y OOy

According to Cauchy-Riemann’s condition:
0 _0J(H, 0 __9J(H, j
ax( (o)_ay(ocj’ ay( ?)= ax(O'C

Notice that 1 =—i, (a2) is proven.
i

According to Mushelishivili [21]:

dF(z) _ 1 j‘-p(Z)\/g2 4 ey PG) @3)
dz N —a® 2, ¢—2 *—a’

" —a
where p(z) is the electrical current imposed on crack surface; P(z) = C, + zC, + z°C, +...+ 7"C,

where the order n and coefficients C;, i =1,2,...,n are to be determined according to remote

boundary condition. The Cauchy integral in (a2) can be solved analytically, see the Appendix of
[69].
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Appendix II Feromagnetic and Antiferromagnetic phases of Iron [46]

a) face centered "|'\r magnatic by bedy centared
oukic (foc) il § Mmomentum cubic {bee]

Fig. II-1: Unit cells of fcc (austenite, ¥ phase) and bec (ferrite/martensite, /o' phase) crystal; the
transformation between them defines “martensitic transformation”

10 ¢ 26
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(a) (b)

Fig. 1I-2 Quantum mechanical computations of the unit atomic cell during fcc-bee
transformation where 77 is the order parameter of lattice constant (77 =0: fcc, 7 =1:bcc). (a)

changes of system energies; the minimum energy path is the actual path of martensitic
transformation; (b) variations of magnetic moment per atom.
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