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Abstract

A general approach has been developed to obtain analytical solutions to the boundary-
value problems for a two-dimensional conductor under static electric and magnetic fields. This
approach is based on a “congruity principle” between a solution of Maxwell’s equation and the
corresponding linear elastic plane stress solution with constant mean stress or plane strain
solution with constant mean in-plane stress. It also leads to a new avenue to construct analytical
solutions of anti-plane strain boundary-value problems using plane stress/strain solutions, or vice
versa, in linear elastic theory. This approach has been applied for such engineering problems as
contact between two conducting solid bodies under electrical load.

Keyword: Maxwell Equation, electrical load, conductor, magnetic field, contact, congruity
principle, analytical anti-plan strain solution

1. Introduction

Although the electrostatic mean field theory and linear elasticity belong to different
branches of engineering science [1-22], the similarities between these two classes of physical
phenomena and consistency in mathematical governing equations have been long noticed by
researchers [8, 16, 32, 33]. For example, a two-dimensional static electrical field in a conductor
or dielectric medium is mathematically identical to the corresponding stress field of an anti-plane
strain elastic problem. Reviews about these similarities can be found, e.g. in section 2.8 of [8].
However, from the perspectives of theoretical analysis of mean-field electrostatic applications,
challenges remain at least in the following three respects: (i) only limited analytical solutions
have been found [4], which is also true for anti-plane strain problems in elastic theory [1,5,6,8-
11]; (i1) a magnetic field is always accompanied with an electrical field but very few reported
analytical solutions can be found; it is also not clear if there is a corresponding solution to
electrostatic magnetic field in linear elasticity; and (iii) no reported study has been found about
the relationship between the two-dimensional (plane strain and plane stress) elastic solutions and
their electrostatic counterpart.

Recently, the boundary value problems coupling mechanical and electrical-magnetic
loads have gained increasing attention [15,18-21,23-29,36,37], because nanotechnology brings
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up rapid developments of micro-and-nano scale machines and devices [23-25,37]. Under such
small scales many mechanical problems are naturally coupled with electrical and magnetic loads.
On the other hand, magnetic force-based transportation systems become more common in
engineering applications [26-28,34]. In both cases, the corresponding boundary value problems
are usually associated with contact and friction. This class of problems can be simplified as the
system illustrated in Fig.la; where a conductor under mechanical pressure and electrical load is
resting upon a semi-infinite elastic conducting substrate. The corresponding pure elastic contact
solutions for various contact zone profiles have been thoroughly investigated [7,12,13,35,38,39].
By contrast, this issue remains open for closed form solutions under electrical loads.
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Fig. 1 The model analyzed: (a) a rigid conductor contacts a semi-infinite elastic
conducting substrate under mechanical pressure and electrical load; the
corresponding solutions of Maxwell’s equations can be classified as the
boundary-value problems described by (b)

Focusing on these challenges, a study has been performed in this paper to explore the
intrinsic linkage between an elastic plane stress/strain solution and the corresponding boundary-
value problem in electrostatic theory, which leads to a “congruity principle” between these two
classes of problems and an approach to obtain analytic solutions of two-dimensional Maxwell’s
equations using the Airy stress function obtained by, e.g., Muskhelishvili’s method [6]. It also
leads to a new avenue to solve anti-plane strain elastic problems analytically, based on plane
stress/strain elastic solutions, or vice versa. Though numerical computation becomes the primary
means, a theoretical solution able to provide an accurate overview of an engineering problem
remains as a challenging and attractive object for many purposes [15-23, 30, 31, 34, 37-39].

In this paper standard notation is used throughout the text except when otherwise specified.
The boldface symbols denote tensors; the order of a tensor is indicated by the context. Plain
symbols denote scalars or components of a tensor when a subscript is attached. Repeated indices
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are summed. For second order tensors @ and b: a = la,.jJ, b= lb,.jJ: a-b= [aikbij, a:b= [aijbij ,
ab = [aijbk, .

Regarding the coordinate system: symbol z, represents the coordinate perpendicular to the

[Y2)

{x, v} plane in a three-dimensional Cartesian system {x, y,z3}; subscript “z” or “3” indicates a

€69

variable in the z, direction whereas variable “z” represents a point in the complex plane

z=x+iy with i=+/—1 and Z=x—iy[6,8]. Notations Re{f(z)} and Im{f(z)} denote the real
and imaginary parts of complex function f(z), respectively; hence, when fi (z) and f (z) are
real functions:

f(2)= fi(2)+if,(2). Re{f (o= fi(z).  Im{f(e)}=f,(2)

When both f, (z) and f, (z) can be either real or complex functions and f (z) = fi (z)+ if, (z):

@)= £(2)-if,(2), f@)=£E)+if,z) and  f(z)=f(2)= £(2)-if.(2)

2. Models and Governing Equations
2.1 Maxwell’s Equations

Electrostatic problems are governed by Maxwell’s equations. Let symbols E, J, H, B
denote in turn macroscopic electric field, current density, macroscopic magnetic field, and
magnetic induction field. For problems without source charges the macroscopic Maxwell
equations in SI unit read [2,4]:

L. V-B=0
1L VXE =0
I1. V-E=0 (D)

Iv. VXB=u,J
with Ohm’s Law at each material point:

J=0‘E (2a)
and
H=/u,B (2b)

In (1) and (2a,b) magnetic permeability 4, and electric conductivity o€ are assumed to be
constants. In this analysis only the magnetic field induced by an electric field is taken into
account; therefore, the coupling effects of the magnetic field on the electric field, e.g. the Hall
effect, are assumed to be relatively weak for a system as in Fig. 1a or 1b and will be omitted in
the following analysis.
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Under two-dimensional conditions of E, =B =B =0 but B, # 0, Maxwell equation III
in (1) can be satisfied by an “electrical potential” F, a harmonic function defined as:

Ex:—a—F, E :—a—F and V?’F=0, 3)
ox ’ dy

by which the Maxwell equation I in (1) is also satisfied.
2.2 Equilibrium Condition [1,6]

For a solid body obeying linear elasticity, its stress tensor ¢, strain tensor & and
displacement field, u, are correlated through the linear Hooke’s law under small strain as follows:

c6=C¢ 8=%[V u+VTu] “4)

where C° is the elastic stiffness tensor and V is gradient operator. The static state equilibrium
condition reads:
Vo =0 &)

when no body force is present.

Under the anti-plane strain condition of u, =u, =0 and 0,, =0, =0, =0_=0, (4)

Yy

and (5), respectively, become:

du ou
= G < . = —Z 4
o-xz ox O-yz ay ( a)
and
0
99, %% _ (52)
ox dy

where G is shear modulus. Obviously, a solution, u_, satisfying (4a, 5a) has its counterpart of
electrical potential F' =—u_k satisfying (3) where k is an arbitrary constant.

Under plane strain (€, = g, =€ =0) or plane stress conditions (o, =0, =0_=0),

in Cartesian coordinates the equilibrium condition (5) and Cauchy geometric (strain-
displacement) relation, respectively, become

0 0 0
o, L 99, _o. Oy 99, _, ©
ox dy ox dy

and
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ou du, 1({0u. Ou
E. = = 5 g, = s 8x =3 _x+_y 7
T ox Y9y ! 2( dy  Ox @
The corresponding elastic stiffness tensor is:
1 v
EV
C = —lv 1 (4¢)
I-v 1—v
2
\ \ . , E Y ) ,
for plane stress: E'=E, v'=v; plane strain: E'= = % :1 ; where E is the Young’s
-y -y

modulus and v is the Poisson’s ratio.

For a linear elastic solid under small deformation:

(O-xx + O-yy + O-zz ): (gxx + gyy + gzz ) (8)

1-2v

2.3 Airy Stress Function [1, 6]
Equation (6) can be satisfied if stresses are expressed as the derivatives of Airy stress
function U:

o _82_U o _ov o ——aZU )
vyt oo Y Odyox

where U is a biharmonic function:
VVU =0 (10)

According to Love [1] and Muskhelishvili [6], the corresponding displacement solution
yields

u, vin, =[OV OV AF2G (11)
Y 2G ox 9y G(/1+2G)(p
where
Ev E
ﬂ,:—, G = ;
(1+v)(1-2v) 2(1+v)
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A and G are the Lame’s constants; ¢(z) is a holomorphic function in a given domain defined as
below:

o)=, [1@He.  F)=flen)+ihly)  and fley)=VU 12)

f (Z ) is also a holomorphic function.

Here a “holomorphic” function, f (z), means that the following conditions are satisfied

[6]:

) a one-to-one mapping exists between the domain z=x+iy,ze Q and the
mapping domain f(z)= f,(x, y)+if,(x,y), f(z)e Q,;
(i1) f(z) is continuous and has infinite order of derivatives that are also holomorphic;

i.e. f(z) can be expanded into a Laurent series:

C C C
f@)= =2+ Lt ozt e, ot e, 2+ (13)
Z Z Z

(iii)  the real and imaginary parts of f(z) satisfy the Cauchy-Riemann conditions:

of (% y) _ af,(x,y) o (xy) __df(xy) (14

ox dy dy ox

which implies:

V£ (xy)=0, V2 £, (x,y)=0 (15)

Conditions (i) and (ii) are necessary and sufficient to each other; i.e. when one of them is
satisfied, so is the other.

2.4 Muskhelishvili’s Complex Function Solution
Muskhelishvili (29-34 of [6]) has proved that the biharmonic condition (10) can be
satisfied in a domain, €, when stresses and displacements are formulated through the complex

functions, ¢(z), w(z) and ®(z)=¢'(z), ¥(z)=y'(z):

c.+0, = Z[CID(z)+ Ci;(z_)} (16)

-0, +0, +2i0, = 2z (z)+¥(2)] (17)
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o1 T e
i, = xole) =2 ole)- o) s
and
=4 A 2o W) 19)
where
A+3G
K=
A+2G

and ( )':di( ): ¢(z) and w(z) are holomorphic functions within the domain, Q ; ¢(z) is
<

related to the Airy stress function, U, in (19) through (12).

3. The Method of Approach
As mentioned previously, the structure of the anti-plane strain solution of (4a, 5a) is the
same as that of (3), provided the out-plane elastic displacement, u_, is replaced by electrical

potential F . By contrast, no study has reported the connection between the electromagnetic field
governed by (1-3) and the plane strain stress field governed by (6-8), which is the objective of
this research.

According to (1) the satisfaction of (3) requires the electrical potential F' to be harmonic;
whereas the Airy stress function is “biharmonic” and the displacement solutions, «, and u, in

(18), are generally not harmonic, except under the additional constraint that is defined by a
“constant mean in-plane stress rule”:

3.1 Constant Mean In-Plane Stress Rule: When a plane stress (or plane strain) linear elastic
solution satisfies the following condition:

o, +0, =const, (20)

the corresponding displacement solutions, {u ,u,}, are harmonic; i.e., either of them can be

used as a two-dimensional electrostatic potential function in (3) with corresponding boundary
condition.

This rule can be verified since, according to (9), the constraint (20) implies
VU = const (21a)

Performing operation V* to the displacement field (11) and substituting (21a) into the resulting
equation leads to
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V2, +iu,)=0  or Vi =0  VZu =0 (21b)
i.e., both u and u are harmonic.

It should be noted that constraint (20) is a necessary condition for the imcompressibility
under plane stress state; but it may not be true for plane strain due to the non-zero out-plane

stress o, . Nevertheless, any linear elastic plane stress solution is structurally identical to a
corresponding plane strain solution but with different elastic stiffness coefficients.

The ‘“‘constant mean in-plane stress rule” implies that each linear elastic plane stress
solution with constant mean stress has its counterpart in the pool of electrostatic solutions

satisfying (3), by which the electrical potential can be expressed either as F =-u k or
F =-u k, where k is an arbitrary constant. It also leads to a new way to construct an analytical

solution of an electrostatic boundary-value problem by applying a linear elastic solution with
similar boundary condition without satisfying (20) and can be stated by the following
“conjugate solution construction formula’:

3.2 Conjugate Solution Formula: A plane stress (or plane strain) displacement solution, which
is constructed by a holomophic stress function (p(z) (= o, (x,y)+i 0, (x,y)) in the form of (16-18)

but may not satisfy (20), defines the following two harmonic functions which are the solutions of
two-dimensional static Maxwell equation Il of (1):

F+iF, = k{%(agc ii%j—% (z)} 22)

where F, and F, are harmonic functions which can be used as electrical potentials
corresponding to different boundary conditions; k is an arbitrary constant; ¢E(z) is the

conjugate function of ¢(z), so @ (z) and its derivative ® P (z) are defined below:

®,(z)=0,'(z)=¢(2) and  ¢,(z)=0(z) (23)

U, =1[Z¢E<z)+ 20, )+, ()4, (Z)} 24)

where Y (2) =y, (6, y)+ iy, (v, y) and vy, (x.y), W, (x.y) are harmonic.

The plane stress/strain solution defined by (16-18) belongs to those constructed by the
holomophic function ¢(z) using Muskhelishvili’s method [6]. However, since O, (z) in (22-24)

may not be holomophic, it has to be verified that ¢, (z) and U P (z) also define a plane stress
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solution o U E) that satisfies (20) through (21a,b), although the solution defined by ¢(z) may
not meet this constraint. Alternatively, the relationship (24) can be rewritten as:

U :x¢1(x’)’)_Y¢2(xay)+V/E1(xay) (25)

since ¥, , ¥,, ¢, and @, are harmonic while ¢, and ¢, obey Cauchy-Riemann condition
(14); then,

99, _ 99,

VU, =
Eoox oy

+Vip, -V, +Vy,, =0 (26)
By substituting (25) into (9), (20) is satisfied:
Gxx (UE )+ ny (UE ) = VzUE = 0

Since U, (z) is also biharmonic, applying (11) goE(z) and U E(z) determine the following
displacement solution of (5):

u,+iu,=—L(aUE 'aUE] A+20 (¢1_i(/’2) 27)

+i +
ox dy G(1+2G)
Both the real and imaginary parts on its right hand side are harmonic.

No attention thus far has been given to the magnetic field. It has been proven in [34] that,
under the two-dimensional conditions of E, =H =H =0, a plane electric potential F" and the

corresponding current-induced magnetic field H, , which is perpendicular to the two-

dimensional plane, are conjugate to each other; i.e., they form a holomorphic function in a given
domain:

f(z)=—F+iH—g (28)
o

where o€ is the conductivity. The derivation of this relation is briefly given in Appendix 1. On
the other hand, a plane stress/strain elastic solution does not assure that u, and u, are conjugate.

The following principle establishes the linkage between linear elastic plane solution and
magnetic field.

3.3 Congruity Principle: A linear elastic plane stress (or plane strain) solution in the form of

(16-18) is congruent to the following electromagnetic field solution of two-dimensional static
Maxwell equations (1) with the difference in constant factor k:
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L {l[aUE —iaUEj+(7E(Z)} (29)

o 2\ ox dy

where the stress functions @, (z) and U E (z) are defined by (23) and (24), respectively.

According to [6] any linear elastic small strain plane stress (or plane strain) solution can
be expressed in the form of (16-18), constructed by holomorphic function ¢(z); and @,(z) is
holomorphic since @, (z)= ¢(z) according to (23). Hence, the congruity principle is true if the

first two terms on the right hand side of (29) also form a holomorphic function. This can be
verified through the satisfaction of Cauchy-Riemann conditions (14), which is obvious since the

first relation of (14) requires V°U, (z)=0 and the second requires i(%j = —i - Uy .
dy \ dx ox dy

By comparison between the right hand side of (29) and that of (11) one can find:

—F+ng = ko, —iuy,) (29a)
o

where u, and u, are the two components of a displacement field solution constructed by
¢:(2) and U, (2).

3.4 Discussions

For anisotropic conductors, i.e. either the magnetic permeability, 4, , in (1) or the

electric conductivity, o , in (2) or both of them become tensors, according to (3) the

conclusions obtained previously are still applicable except the “Congruity Principle”. The
relationship (a3) in Appendix I is thus no longer equivalent to the Cauchy-Riemann conditions

between F and H_ if o€ is not a constant scalar. Instead, it defines a group of partial difference
equations to determine magnetic field H_:

OH, __F o OF .  OH _OF . OF .

—i=—-—0-—0o¢, = o 30a
dy ox © ody ox ox 7 ady ” (30a)
where
oS of
o€ = {O’fv 0'51:| (30b)

and g, is assumed to be a constant scalar.

For anisotropic dielectrical materials, the Maxwell’s equation III of (1) becomes:
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V-D=0 (31a)

D=¢:E (31b)

where D is the electrical induction and g, the dielectric coefficient, is a second-order tensor
after ignoring higher order terms. Under these conditions, the solution of (31a) for anisotropic
dielectrical materials is equivalent to the equilibrium solution of anisotropic anti-plane strain
elasticity due to the parities between {electrical potential, electrical field, electrical induction,
dielectrical tensor} and {displacement, stress, strain, elastic stiffness matrix}. Additional partial
different equations, for example, (30a), are required to solve the magnetic field.

Furthermore, the conclusions obtained in the previous subsections imply that all
harmonic solutions, such as electrical potentials and anti-plane strain displacements, belong to a
sub-domain of the family of plane stress solutions represented by biharmonic Airy’s stress
functions. This relationship seems also to be true for anisotropic cases. In [19, 40] the general
solution of anisotropic piezoelectric elasticity has been constructed based on Stroh’s formulation
[5], which demonstrates the same solution structure as the corresponding anisotropic elasticity
problems obtained in [41,42].

In fact, according to the framework of classical elasticity theory [1, 10, 11], the “Constant
Mean In-Plane Stress Rule” 1is an additional constraint that requires the divergence of Galerkin
vector’s Laplacian to vanish; whereas the “Conjugate Solution Formula” describes the procedure
of the Papkovich-Neuber solution under this constraint. The recent published literature [43]
shows that the Papkovich-Neuber general solution may also be applicable to anisotropic
elasticity.

4. Examples
4.1 An Infinite Plate with Circular Hole under a Uniform Electrical Load at Infinite

As an application example of the approach, the electrical-magnetic solution of a circular-
shaped dielectric inclusion in an infinite conducting plate under uniform electrical load at a
remote distance, depicted in Fig. 2a, has been obtained using (20-29). This is the case of an
ellipsoid inclusion when its major and minor axes become equal [2].

The corresponding elastic solution has been described, e.g. in [6]; where the Airy stress
function for the configuration in Fig. 2a under a uniform remote stress, o, = o, yields:

U(Z)Z%[Z¢(Z)+ za(z)] and ¢=Tm£z+ 22’2] (32a)

By replacing o™ with E” in (30) and applying (23) and (24), the “electrical Airy function” is
obtained as follows:
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U, (z)=%[Z¢E (2)+26"(2). o=, wE =0 (32b)

Substituting (32b) into (23) and letting z=x+1iy, 7 =x—1iy, then applying the “congruity
principle”, the electrical potential, magnetic field, and density fields can be obtained as follows:

00 3 2 2

F:—E—{x+x ty X2, } (33a)
2 x4y
0o 3 2 2

HZ:E_|:y+y +)’2x 22yrb :| (33b)
2 x4y

E® 3x2 + y2 +2rb2 2()63 + y2x+ 2xrb2)x

E, = 1+ 34

o2 X2 +y? (x2+y2)2 Gd
. S+ yix+2xr”

R LcZ)jryy2 B (x (jziyz)irb )y} )

where the {x, y} coordinate system originates at the center of the circle; by which the x axis lies

in the vertical direction of Fig. 2a, defining the center line of symmetry of the infinite plate
conductor. Fig. 2b and 2c are the corresponding electrical potential and magnetic field. One can

verify that
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(a} Problem analyzed (b) Electrical potential (c) Magnetic field

Fig. 2 Analytic solution of an infinitely large conductor plate containing a circular

hole under a uniform electrical field E™ at remote; (a) model analyzed; (b)
contours of the electrical potential; (c) contours of the magnetic field.

4.2 Solutions for the Contact Problems in Fig. 1b

The problem to be analyzed in Fig. 1a represents two classes of physical contacts: 1. a
semi-infinite conducting substrate is in contact with a conducting body under a static electrical
load; II. a semi-infinite elastic substrate in contact with a rigid body under a mechanical load.
The former can be classified into the boundary-value problem governed by Maxwell’s equations
for each individual conductor; for example, as illustrated by Fig. 1b, the semi-infinite substrate
with the boundary condition described by the contact surface. The latter has been investigated
thoroughly, for example, in [5,6,7,12], with benchmark solutions for different boundary
conditions. Applying the “conjugate solution formula” and the “congruity principle” introduced
in the previous section, these benchmark solutions can be used to construct the solutions for the
first class of problems with the boundary conditions on the contact surface, which can therefore
be described by one of the following two expressions:

(bl) given total electrical current flow I, and electric potential on the contact surface
—a < x < a, where the electrical potential can be expressed as a Taylor’s expansion:

F(x)=a,+ax+a,x*+.. for—a<x<a (36)

(b2) given a reference potential at any material point and electric field density E_(x) on

y

the contact surface —a<x<a.
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The condition (bl) corresponds to the displacement boundary condition in mechanical contact
whereas (b2) is the counterpart of the force boundary condition in linear elasticity. For (bl), the
following additional boundary conditions are required:

1= [E ==t [ (37)

where I is the total electrical flow per unit thickness of the contact surface. Also, for both cases:

E (z)=0 when x>a or x<-—a (38a)

y

|E,(z)+iE,(z) =0 when |z — oo (38b)

In order to demonstrate the procedure, the problem of Fig. 1b has been solved with
boundary condition (b1) and the following symmetric condition:

F(x+iy)=F(—x+iy) (39)

For simplification, a =1 and only the case of a constant electrical potential on contact surface,
ie F(x)= a, is solved. Under this condition, the corresponding linear elastic contact solution

has the stress function in the following form [6]:

Pi 7 oy P
(p(z)——ﬂln{zivz i} and (”(Z)_i—zﬁm (40)

where P is the total force perpendicular to the surface; the positive or negative sign in (40) is
corresponding to the contact with pressure or adhesion. Applying (23,24) to formulate the
electrical stress function, ¢, (z), according to (40) and (39):

0, = Alogle + 77 —1)~1ogle — vz _1 @41)

where A is a real constant; accordingly, the harmonic function, ¥, , in the following form is
chosen:

W, =-2ANZ" - 1] (42)

Substituting (41,42) into (24) to obtain U, and applying the following relations:
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aUE:E)UE_i_aU_E, BUE:iaUE_iaU_E 43)
ox 0z o7 dy 0z 07

Using the Congruity Principle:

—F+i1;_lcZ :ZAﬁog(z+VZ2—1)—10g(z—\/z2—1)}+A0 (44)

where Ay is a constant; and then applying (3) and (43) to (44), the electrical current field yields

4A

E —iE = 45)
2
77 -1

Notice that, on the contact surface, i.e. y =0, x| <1:

zEVzP—1=x%il-x* and ‘xii\/l—xz =1 (46a)
, SO

H . 1—x?
—F+i—%=2Ai{2arctan tnry+ A, n=0,12,... (46b)
o X

According to (36), (37) and symmetric condition (39), the constants Ay and A are determined:

I, I
=—-q,——= A=—2=
A L) 4rc€

(47)

Applying the solution (44) to the case that electrical current flows from the substrate to the upper
conductor, the corresponding normalized electrical potential and magnetic field are plotted in Fig.
3a.b; where the H . varies from -1 to 1 inside the contact zone (|x| <1) whereas remains constant
along the remainder of the real axis. The electrical field (45) coincides with the stress distribution
of the contact problem, the second relation of (40), solved in [6]. As illustrated by the Fig. 5a,
this function has two branches in its Riemann’s surface: the half plane R; is corresponding to the
Griffith’s stress solution of center cracked infinite plate; the half plane Rj; is corresponds to the
two-dimensional mechanical contact solution (40) and the electrical field defined by (44). The
component E of the latter is plotted in Fig. 4b.

Fig. 5 is the cY9h electrical potential distributions of two semi-infinite conducts contact

each other over the line segment y =0, x| <1 according to (44); where the value of the

conductivity o€ in the upper semi-infinite conductor is a half of that in the lower plate. When the
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upper conductor is finite, for example, a rectangular bar, the corresponding stress function for the
mechanical problem has been given, e.g. in [1, 6, 11]. It is straight forward to construct the
corresponding electrical solution applying the procedure introduced.

\contact Zohe

JAMO08-1114-0, corresponding author: Su Hao (suhao @northwestern.edu) 16
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Fig. 3 The normalized electrical potential (a) and magnetic field (b)
for the contact problem in Fig. 1b
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Fig. 4 Electrical field: (a) the two branches of the Riemann’s surface of (45) where the branch Ry,
is corresponding the boundary value problem in Fig. 1b. (b) E according to (45).
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Fig. 5 Contours of electrical potentials for the problem of contact between two

semi-infinite conductors; on the contact surface |x| <1, y=0 the electrical

potential (36) is applied with a, =1,a,,, =0 and the value of conductivity

o in upper semi-infinite conductor is one half of that in the lower plate.

5. Conclusions

This analysis reveals an intrinsic link between plane stress (or plane strain) linear elastic
solution and two-dimensional electrostatic solution of Maxwell’s equations. This linkage can be
stated as follows:

L.

IL.

II1.

Any plane stress/plane strain displacement solution with constant mean in-plane
stress can be represented by a pair of harmonic functions, so each displacement
component is identical to a two-dimensional electrical potential with
corresponding boundary condition; this is termed “constant mean in-plane stress
rule”.

For any plane stress/plane strain solution, one can form a corresponding plane
solution that satisfies the “constant mean in-plane stress rule” through the
conjugate of its complex stress function; this procedure is termed ‘“conjugate
solution formula”.

The two displacement components of a plane stress/strain solution obtained
according to the “conjugate solution formula” are structurally identical to a two-
dimensional electrical field and accompanied magnetic field which satisfy the
electrostatic Maxwell’s equations; this fact is termed “congruity principle”.

JAMO08-1114-0, corresponding author: Su Hao (suhao @northwestern.edu) 19
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The congruity principle leads to a procedure to obtain analytical solutions of electrostatic
boundary-value problem using Airy’s stress function and Muskhelishvili’s method. Examples of
an infinite plate with a circular hole and a contact between a rigid conductor and a semi-infinite
elastic conducting substrate have been analyzed.

According to the framework of the classic elasticity theory, the “constant mean in-plane
stress rule” is an additional constraint that requires the divergence of Galerkin vector’s Laplacian
to vanish; whereas the “conjugate solution formula” describes the procedure of the Papkovich-
Neuber solution under this constraint. The approach developed in this paper also leads to an
alternate way to obtain close form solutions of anti-plane strain elastic problems from plane
stress/strain elastic solutions.

Acknowledgements: The authors would like to express their sincere gratitude to the support of
US Office of Naval Research.

Appendix I: Proof of (22) [34]

When no out-plane current: oCE . =J,=0, the Maxwell’s equation IV of (1),
VxB = u,J ,becomes

[ oH, OH, [ 9F]
gy aaZ3 Ty E, Cox
_ gﬁ% _1/, |20 E, |= o€ —Z—F (al)
3 E y
am, o, | L ; 0
| dy ox | - .

where H = 1, B . Under the two-dimensional conditions:
E.=H =H =0, (a2)
by substituting (a2) into (al) one obtains

_OF _ 0H, JF _ OH,
ox oy’ dy o ox

(a3)

which is the Cauchy-Riemann condition (14). Hence, F' and corresponding H,k form a
holomorphic function:

f(z)=—F+zH—Cz (22)
(0}
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Figures Captions

Fig. 1 The model analyzed: (a) a rigid conductor contacts a semi-infinite elastic conducting
substrate under mechanical pressure and electrical load; the corresponding solutions of
Maxwell’s equations can be classified as the boundary-value problems described by (b).

Fig. 2 Analytic solution of an infinitely large conductor plate containing a circular hole under a

uniform electrical field E” at remote; (a) model analyzed; (b) contours of the electrical potential;
(c) contours of the magnetic field.

Fig. 3 The normalized electrical potential (a) and magnetic field (b) for the contact problem in
Fig. 1b.

Fig. 4 Electrical field: (a) the two branches of the Riemann’s surface of (45) where the branch Ry,
is corresponding the boundary value problem in Fig. 1b. (b) E according to (45).

Fig. 5 Contours of electrical potentials for the problem of contact between two semi-infinite

conductors; on the contact surface |x| <1, y =0 the electrical potential (36) is applied with

C

a,=1,a,,=0 and the value of conductivity o~ in upper semi-infinite conductor is one half of

that in the lower plate.
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