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Abstract 
A general approach has been developed to obtain analytical solutions to the boundary-

value problems for a two-dimensional conductor under static electric and magnetic fields. This 
approach is based on a “congruity principle” between a solution of Maxwell’s equation and the 
corresponding linear elastic plane stress solution with constant mean stress or plane strain 
solution with constant mean in-plane stress. It also leads to a new avenue to construct analytical 
solutions of anti-plane strain boundary-value problems using plane stress/strain solutions, or vice 
versa, in linear elastic theory. This approach has been applied for such engineering problems as 
contact between two conducting solid bodies under electrical load. 

   
 
Keyword: Maxwell Equation, electrical load, conductor, magnetic field, contact, congruity 
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1. Introduction 

Although the electrostatic mean field theory and linear elasticity belong to different 
branches of engineering science [1-22], the similarities between these two classes of physical 
phenomena and consistency in mathematical governing equations have been long noticed by 
researchers [8, 16, 32, 33]. For example, a two-dimensional static electrical field in a conductor 
or dielectric medium is mathematically identical to the corresponding stress field of an anti-plane 
strain elastic problem. Reviews about these similarities can be found, e.g. in section 2.8 of [8]. 
However, from the perspectives of theoretical analysis of mean-field electrostatic applications, 
challenges remain at least in the following three respects: (i) only limited analytical solutions 
have been found [4], which is also true for anti-plane strain problems in elastic theory [1,5,6,8-
11]; (ii) a magnetic field is always accompanied with an electrical field but very few reported 
analytical solutions can be found; it is also not clear if there is a corresponding solution to 
electrostatic magnetic field in linear elasticity; and (iii) no reported study has been found about 
the relationship between the two-dimensional (plane strain and plane stress) elastic solutions and 
their electrostatic counterpart. 

 
Recently, the boundary value problems coupling mechanical and electrical-magnetic 

loads have gained increasing attention [15,18-21,23-29,36,37], because  nanotechnology brings 
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up rapid developments of micro-and-nano scale machines and devices [23-25,37]. Under such 
small scales many mechanical problems are naturally coupled with electrical and magnetic loads. 
On the other hand, magnetic force-based transportation systems become more common in 
engineering applications [26-28,34]. In both cases, the corresponding boundary value problems 
are usually associated with contact and friction. This class of problems can be simplified as the 
system illustrated in Fig.1a; where a conductor under mechanical pressure and electrical load is 
resting upon a semi-infinite elastic conducting substrate. The corresponding pure elastic contact 
solutions for various contact zone profiles have been thoroughly investigated [7,12,13,35,38,39]. 
By contrast, this issue remains open for closed form solutions under electrical loads. 

 

Fig. 1  The model analyzed: (a) a rigid conductor contacts a semi-infinite elastic 
conducting substrate under mechanical pressure and electrical load; the 
corresponding solutions of Maxwell’s equations can be classified as the 
boundary-value problems described by (b)   

 
Focusing on these challenges, a study has been performed in this paper to explore the 

intrinsic linkage between an elastic plane stress/strain solution and the corresponding boundary-
value problem in electrostatic theory, which leads to a “congruity principle” between these two 
classes of problems and an approach to obtain analytic solutions of two-dimensional Maxwell’s 
equations using the Airy stress function obtained by, e.g., Muskhelishvili’s method [6]. It also 
leads to a new avenue to solve anti-plane strain elastic problems analytically, based on plane 
stress/strain elastic solutions, or vice versa. Though numerical computation becomes the primary 
means, a theoretical solution able to provide an accurate overview of an engineering problem 
remains as a challenging and attractive object for many purposes [15-23, 30, 31, 34, 37-39]. 
 

In this paper standard notation is used throughout the text except when otherwise specified. 
The boldface symbols denote tensors; the order of a tensor is indicated by the context. Plain 
symbols denote scalars or components of a tensor when a subscript is attached. Repeated indices 
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are summed. For second order tensors a and b: [ ]ija=a , [ ]ijb=b : [ ]kjik ba=⋅ba , [ ]ijijba=ba : , 

[ ]klijba=ab .  
 
Regarding the coordinate system: symbol 3z  represents the coordinate perpendicular to the 

{ }yx,  plane in a three-dimensional Cartesian system { }3,, zyx ; subscript “z” or “3” indicates a 
variable in the 3z  direction whereas variable “z” represents a point in the complex plane 

iyxz +=  with 1−=i  and iyxz −= [6,8]. Notations ( ){ }zfRe  and ( ){ }zfIm  denote the real 
and imaginary parts of complex function ( )zf , respectively; hence, when ( )zf1   and ( )zf2  are 
real functions: 

 
  ( ) ( ) ( )zifzfzf 21 += ,   ( ){ } ( )zfzf 1Re = , ( ){ } ( )zfzf 2Im =  
 

When both ( )zf1   and ( )zf2  can be either real or complex functions and ( ) ( ) ( )zifzfzf 21 += : 
 

 (((( )))) (((( )))) (((( ))))zifzfzf 21 −−−−==== ,  ( ) ( ) ( )zifzfzf 21 +=  and ( ) ( ) ( ) ( )zifzfzfzf 21 −==
−−−−

   
   
 

 

2. Models and Governing Equations 
2.1 Maxwell’s Equations 

Electrostatic problems are governed by Maxwell’s equations. Let symbols E, J, H, B 
denote in turn macroscopic electric field, current density, macroscopic magnetic field, and 
magnetic induction field. For problems without source charges the macroscopic Maxwell 
equations in SI unit read [2,4]: 
 
I. 0=⋅∇ B            
II. 0=×∇ E            
III. 0=⋅∇ E          (1) 
IV. JB Hµ=×∇            
 
with Ohm’s Law at each material point:    

 
EJ Cσ=          (2a) 

and 
 BH Hµ=          (2b) 
 
In (1) and (2a,b) magnetic permeability Hµ  and electric conductivity Cσ  are assumed to be 
constants. In this analysis only the magnetic field induced by an electric field is taken into 
account; therefore, the coupling effects of the magnetic field on the electric field, e.g. the Hall 
effect, are assumed to be relatively weak for a system as in Fig. 1a or 1b and will be omitted in 
the following analysis.  
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Under two-dimensional conditions of 0=== yxz BBE  but 0≠zB , Maxwell equation III 
in (1) can be satisfied by an “electrical potential” F, a harmonic function defined as: 
 

x
F

Ex ∂
∂−= ,   

y
F

E y ∂
∂−=  and 02 =∇ F ,    (3) 

 
by which the Maxwell equation II in (1) is also satisfied. 
 
 
2.2 Equilibrium Condition [1,6] 

For a solid body obeying linear elasticity, its stress tensor � , strain tensor εεεε, and 
displacement field, u, are correlated through the linear Hooke’s law under small strain as follows: 
 

 �C� :e=    [ ]uu�
T∇+∇=

2
1

    (4) 

 
where eC  is the elastic stiffness tensor and ∇  is gradient operator. The static state equilibrium 
condition reads: 
 
 0=∇�          (5) 
 
when no body force is present.  
 
 Under the anti-plane strain condition of 0== yx uu  and 0==== zzxyyyxx σσσσ , (4) 
and (5), respectively, become: 
 

 
x
u

G z
xz ∂

∂=σ ,  
y
u

G z
yz ∂

∂=σ       (4a) 

and 

 0=
∂

∂
+

∂
∂

yx
yzxz

σσ
        (5a) 

 
where G is shear modulus. Obviously, a solution, zu , satisfying (4a, 5a) has its counterpart of 
electrical potential kuF z−=  satisfying (3) where k is an arbitrary constant. 
 

Under plane strain ( 0=== zzyzxz εεε ) or plane stress conditions ( 0=== zzyzxz σσσ ), 
in Cartesian coordinates the equilibrium condition (5) and Cauchy geometric (strain-
displacement) relation, respectively, become 
 

 0=
∂

∂
+

∂
∂

yx
xyxx

σσ
,  0=

∂
∂

+
∂

∂
yx

yyxy σσ
    (6) 

and 
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x

u x
xx ∂

∂=ε ,  
y

u y
yy ∂

∂
=ε ,  ��

�

�
��
�

�

∂
∂

+
∂
∂=

x

u

y
u yx

xy 2
1ε   (7) 

 
The corresponding elastic stiffness tensor is: 
 

 

�
�
�
�

�

	










�

�

−−
=

2
1

1'

'1

'1
'

2
v

v

v

v
EeC        (4c) 

 

for plane stress: EE =' , vv =' ; plane strain: 21
'

v
E

E
−

= , 
v

v
v

−
=

1
' ; where E is the Young’s 

modulus and v is the Poisson’s ratio.  
 
 For a linear elastic solid under small deformation: 
 

 ( ) ( )zzyyxxzzyyxx v
E εεεσσσ ++

−
=++

21
     (8) 

 
 
2.3 Airy Stress Function [1, 6] 

Equation (6) can be satisfied if stresses are expressed as the derivatives of Airy stress 
function U: 
 

 2

2

y
U

xx ∂
∂=σ ,  2

2

x
U

yy ∂
∂=σ ,  

xy
U

xy ∂∂
∂−=

2

σ    (9) 

 
where U is a biharmonic function: 
 
 022 =∇∇ U          (10) 
 
 According to Love [1] and Muskhelishvili [6], the corresponding displacement solution 
yields 
 

 ( ) ( )z
GG

G
y
U

i
x
U

G
iuu yx ϕ

λ
λ

2
2

2
1

+
++��

�

�
��
�

�

∂
∂+

∂
∂−=+     (11) 

 
where 
 

 ( )( )vv
Ev

211 −+
=λ ,  ( )v

E
G

+
=

12
;       
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λ  and G are the Lame’s constants; ( )zϕ  is a holomorphic function in a given domain defined as 
below: 
 

 ( ) ( )dzzfz 
=
4
1ϕ , ( ) ( ) ( )yxifyxfzf ,, 21 +=  and ( ) Uyxf 2

1 , ∇=   (12) 

 
( )zf  is also a holomorphic function.  

 
Here a  “holomorphic” function, ( )zf , means that the following conditions are satisfied 

[6]:  
 
(i) a one-to-one mapping exists between the domain Ω∈+= ziyxz  ,  and the 

mapping domain ( ) ( ) ( )yxifyxfzf ,, 21 += , ( ) fzf Ω∈ ; 

(ii) ( )zf  is continuous and has infinite order of derivatives that are also holomorphic; 
i. e. ( )zf  can be expanded into a Laurent series: 

  

 ( ) ............ 2
210

1
2
2 +++++++++= −−− n

nn
n zczczcc

z
c

z
c

z
c

zf   (13) 

 
(iii) the real and imaginary parts of ( )zf  satisfy the Cauchy-Riemann conditions: 
 

( ) ( )
y

yxf
x

yxf
∂

∂=
∂

∂ ,, 21 ,  
( ) ( )

x
yxf

y
yxf

∂
∂−=

∂
∂ ,, 21   (14)  

 
which implies: 

 
( ) 0,1

2 =∇ yxf ,  ( ) 0,2
2 =∇ yxf    (15) 

   
 
Conditions (i) and (ii) are necessary and sufficient to each other; i.e. when one of them is 
satisfied, so is the other. 
 
 
2.4 Muskhelishvili’s Complex Function Solution  

Muskhelishvili (29-34 of [6]) has proved that the biharmonic condition (10) can be 
satisfied in a domain, Ω , when stresses and displacements are formulated through the complex 
functions, ( )zϕ , ( )zψ  and ( ) ( )zz 'ϕ=Φ ,  ( ) ( )zz 'ψ=Ψ : 

 

( ) ( )��
	


�

� Φ+Φ=+
−−−−
zzyyxx 2σσ        (16) 

( ) ( )[ ]zzzi xyyyxx Ψ+Φ=++− '22 σσσ      (17) 



Accepted by J. Applied Mechanics at July, 2008 

JAM08-1114-0, corresponding author: Su Hao (suhao@northwestern.edu) 
 

7 

( ) ( ) ( )��
	


�

� −−=+
−−−−−−−−−−

zzzz
G

iuu yx ψϕκϕ
2
1

      (18) 

and  

 (((( )))) (((( )))) (((( )))) (((( )))) ����
����

				





����

����
++++++++++++====

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
zzzzzzU ψψϕϕ

2
1

     (19) 

 
where 

G
G

2
3

+
+=

λ
λκ            

 

and ( ) ( )
dz
d=' ; ( )zϕ  and ( )zψ  are holomorphic functions within the domain, Ω ; ( )zϕ  is 

related to the Airy stress function, U , in (19) through (12).   
 
 
3. The Method of Approach  

As mentioned previously, the structure of the anti-plane strain solution of (4a, 5a) is the 
same as that of (3), provided the out-plane elastic displacement, zu , is replaced by electrical 
potential F . By contrast, no study has reported the connection between the electromagnetic field 
governed by (1-3) and the plane strain stress field governed by (6-8), which is the objective of 
this research.  

 
According to (1) the satisfaction of (3) requires the electrical potential F  to be harmonic; 

whereas the Airy stress function is “biharmonic” and the displacement solutions, xu  and yu  in 
(18), are generally not harmonic, except under the additional constraint that is defined by a 
“constant mean in-plane stress rule”: 

 
3.1 Constant Mean In-Plane Stress Rule: When a plane stress (or plane strain) linear elastic 
solution satisfies the following condition: 
 

 constyyxx =+σσ ,        (20) 
 
the corresponding displacement solutions, { xu , yu }, are harmonic; i.e., either of them can be 
used as a two-dimensional electrostatic potential function in (3) with corresponding boundary 
condition.  
 

This rule can be verified since, according to (9), the constraint (20) implies  
 
 constU =∇2          (21a) 
 
Performing operation 2∇  to the displacement field (11) and substituting (21a) into the resulting 
equation leads to  
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( ) 02 =+∇ yx iuu   or 02 =∇ xu  02 =∇ yu    (21b) 
 
i.e., both xu  and yu  are harmonic. 
 
 It should be noted that constraint (20) is a necessary condition for the imcompressibility 
under plane stress state; but it may not be true for plane strain due to the non-zero out-plane 
stress zzσ . Nevertheless, any linear elastic plane stress solution is structurally identical to a 
corresponding plane strain solution but with different elastic stiffness coefficients. 
 
 The “constant mean in-plane stress rule” implies that each linear elastic plane stress 
solution with constant mean stress has its counterpart in the pool of electrostatic solutions 
satisfying (3), by which the electrical potential can be expressed either as kuF x−=  or 

kuF y−= , where k is an arbitrary constant. It also leads to a new way to construct an analytical 
solution of an electrostatic boundary-value problem by applying a linear elastic solution with 
similar boundary condition without satisfying (20) and can be stated by the following 
“conjugate solution construction formula”: 
 
3.2 Conjugate Solution Formula: A plane stress (or plane strain) displacement solution, which 
is constructed by a holomophic stress function ( )zϕ ( ) ( )( )yxiyx ,, 21 ϕϕ +=  in the form of (16-18) 
but may not satisfy (20), defines the following two harmonic functions which are the solutions of 
two-dimensional static Maxwell equation III of (1):   
   

 ( )
�
�
�

�
�
�

−��
�

�
��
�

�

∂
∂±

∂
∂=+ z

y
U

i
x

U
kiFF E

EE ϕ
2
1

21       (22) 

 
where 1F  and 2F  are harmonic functions which can be used as electrical potentials 
corresponding to different boundary conditions; k is an arbitrary constant; ( )zEϕ  is the 
conjugate function of ( )zϕ , so ( )zEϕ  and  its derivative ( )zEΦ  are  defined below:  
 

( ) ( ) ( )
−−−−−

==Φ zzz EE '' ϕϕ  and ( ) ( )
−−−−−

= zzE ϕϕ        (23) 
 
The electrical Airy stress function, ( )zU E , in (22) is defined by: 
 

 ( ) ( ) ( ) ( )��
	


�

� +++=
−−−−−−−−−−−−

zzzzzzU EEEEE ψψϕϕ
2
1

      (24) 

 
where ( ) ( ) ( )yxiyxz EEE ,, 21 ψψψ +=  and ( )yxE ,1ψ , ( )yxE ,2ψ  are harmonic. 
  

The plane stress/strain solution defined by (16-18) belongs to those constructed by the 
holomophic function ( )zϕ  using Muskhelishvili’s method [6]. However, since ( )zEϕ  in (22-24) 
may not be holomophic, it has to be verified that ( )zEϕ  and ( )zU E  also define a plane stress 
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solution ( )Eij Uσ  that satisfies (20) through (21a,b), although the solution defined by ( )zϕ  may 
not meet this constraint. Alternatively, the relationship (24) can be rewritten as: 
 
 ( ) ( ) ( )yxyxyyxxU EE ,,, 121 ψϕϕ +−=       (25) 
         
since 1Eψ , 2Eψ , 1ϕ , and 2ϕ  are harmonic while 1ϕ  and 2ϕ  obey Cauchy-Riemann condition 
(14); then, 
 

01
2

2
2

1
2212 =∇+∇−∇+

∂
∂−

∂
∂=∇ EE yx

U ψϕϕϕϕ
     (26) 

   
By substituting (25) into (9), (20) is satisfied: 
      
 ( ) ( ) 02 =∇=+ EEyyExx UUU σσ  
 
Since ( )zU E  is also biharmonic, applying (11) ( )zEϕ  and ( )zU E  determine the following 
displacement solution of (5): 
 

  ( ) ( )212
2

2
1 ϕϕ

λ
λ

i
GG

G
y

U
i

x
U

G
iuu EE

yx −
+

++��
�

�
��
�

�

∂
∂+

∂
∂−=+     (27) 

 
Both the real and imaginary parts on its right hand side are harmonic.   
 
 No attention thus far has been given to the magnetic field. It has been proven in [34] that, 
under the two-dimensional conditions of 0=== yxz HHE , a plane electric potential F and the 

corresponding current-induced magnetic field zH , which is perpendicular to the two-
dimensional plane, are conjugate to each other; i.e., they form a holomorphic function in a given 
domain: 
 

( )
C
zH

iFzf
σ

+−=           (28) 

 
where Cσ  is the conductivity. The derivation of this relation is briefly given in Appendix I. On 
the other hand, a plane stress/strain elastic solution does not assure that xu  and yu  are conjugate. 
The following principle establishes the linkage between linear elastic plane solution and 
magnetic field. 
 
3.3 Congruity Principle: A linear elastic plane stress (or plane strain) solution in the form of 
(16-18) is congruent to the following electromagnetic field solution of two-dimensional static 
Maxwell equations (1) with the difference in constant factor k: 
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 ( )
�
�
�

�
�
�

+��
�

�
��
�

�

∂
∂

−
∂

∂
=+− z

y
U

i
x

U
k

H
iF E

EE
C
z ϕ

σ 2
1

      (29) 

 
where the stress functions ( )zEϕ  and ( )zU E  are defined by (23) and (24), respectively. 
  

According to [6] any linear elastic small strain plane stress (or plane strain) solution can 
be expressed in the form of (16-18), constructed by holomorphic function ( )zϕ ; and ( )zEϕ  is 
holomorphic since ( ) ( )zzE ϕϕ =  according to (23). Hence, the congruity principle is true if the 
first two terms on the right hand side of (29) also form a holomorphic function. This can be 
verified through the satisfaction of Cauchy-Riemann conditions (14), which is obvious since the 

first relation of (14) requires ( ) 02 =∇ zU E  and the second requires ��
�

�
��
�

�

∂
∂−

∂
∂−=�

�

�
�
�

�

∂
∂

∂
∂

y
U

xx
U

y
EE .   

 
 By comparison between the right hand side of (29) and that of (11) one can find: 
 

 ( )EyExC
z iuuk

H
iF −=+−
σ

        (29a) 

 
where Exu  and Eyu  are the two components of a displacement field solution constructed by 

( )zEϕ  and ( )zU E .  
 
 
3.4 Discussions 

For anisotropic conductors, i.e. either the magnetic permeability, Hµ , in (1) or the 
electric conductivity, Cσ , in (2) or both of them become tensors, according to (3) the 
conclusions obtained previously are still applicable except the “Congruity Principle”. The 
relationship (a3) in Appendix I is thus no longer equivalent to the Cauchy-Riemann conditions 
between F and zH  if Cσ  is not a constant scalar. Instead, it defines a group of partial difference 
equations to determine magnetic field zH : 

 
C
xy

C
xx

z

y
F

x
F

y
H σσ

∂
∂−

∂
∂−=

∂
∂

,   C
yy

C
xy

z

y
F

x
F

x
H σσ

∂
∂+

∂
∂=

∂
∂

    (30a) 

 
where 
  

�
�

	


�

�
= C

yy
C
xy

C
xy

C
xxC

σσ
σσ

σ          (30b) 

 
and Hµ  is assumed to be a constant scalar. 

 
For anisotropic dielectrical materials, the Maxwell’s equation III of (1) becomes: 
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 0=⋅∇ D           (31a) 

where 
 

E:�D =            (31b) 
 
where D  is the electrical induction and � , the dielectric coefficient, is a second-order tensor 
after ignoring higher order terms. Under these conditions, the solution of (31a) for anisotropic 
dielectrical materials is equivalent to the equilibrium solution of anisotropic anti-plane strain 
elasticity due to the parities between {electrical potential, electrical field, electrical induction, 
dielectrical tensor} and {displacement, stress, strain, elastic stiffness matrix}. Additional partial 
different equations, for example, (30a), are required to solve the magnetic field. 
 

Furthermore, the conclusions obtained in the previous subsections imply that all 
harmonic solutions, such as electrical potentials and anti-plane strain displacements, belong to a 
sub-domain of the family of plane stress solutions represented by biharmonic Airy’s stress 
functions. This relationship seems also to be true for anisotropic cases. In [19, 40] the general 
solution of anisotropic piezoelectric elasticity has been constructed based on Stroh’s formulation 
[5], which demonstrates the same solution structure as the corresponding anisotropic elasticity 
problems obtained in [41,42].  

 
In fact, according to the framework of classical elasticity theory [1, 10, 11], the “Constant 

Mean In-Plane Stress Rule”  is an additional constraint that requires the divergence of Galerkin 
vector’s Laplacian to vanish; whereas the “Conjugate Solution Formula” describes the procedure 
of the Papkovich-Neuber solution under this constraint. The recent published literature [43] 
shows that the Papkovich-Neuber general solution may also be applicable to anisotropic 
elasticity. 
   
 
 
4. Examples 
4.1 An Infinite Plate with Circular Hole under a Uniform Electrical Load at Infinite    

As an application example of the approach, the electrical-magnetic solution of a circular-
shaped dielectric inclusion in an infinite conducting plate under uniform electrical load at a 
remote distance, depicted in Fig. 2a, has been obtained using (20-29). This is the case of an 
ellipsoid inclusion when its major and minor axes become equal [2].  
 

The corresponding elastic solution has been described, e.g. in [6]; where the Airy stress 
function for the configuration in Fig. 2a under a uniform remote stress, ∞= σσ x , yields: 

 

( ) ( ) ( )[ ]zzzzzU φφ +=
2
1

 and �
�
�

�
�
�
�

�
+=

∞

z
r

z b
22

4
σφ    (32a) 

 
By replacing ∞σ  with ∞E  in (30) and applying (23) and (24), the “electrical Airy function” is 
obtained as follows: 
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 ( ) ( ) ( )[ ]zzzzzU EE
E φφ +=

2
1

,  φφ =E , 0=Eψ   (32b) 

 
Substituting (32b) into (23) and letting iyxz += , iyxz −= , then applying the “congruity 
principle”, the electrical potential, magnetic field, and density fields can be obtained as follows: 
 

 �
�

	


�

�

+
+++−=

∞

22

223 2
2 yx

xrxyx
x

E
F b       (33a) 

�
�

	


�

�

+
−++=

∞

22

223 2
2 yx

yryxy
y

E
H b

z       (33b) 

 

 
(((( ))))

(((( )))) ����
����

����

				












����

����
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++++++++
−−−−
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++++++++
++++====

∞∞∞∞

222

223

22

222 2223
1

2 yx

xxrxyx

yx

ryxE
E bb

x    (34)   

( )
( ) �

�
�

	





�

�

+
++−

+
= ∞

222

223

22

2

yx

yxrxyx
yx

xy
EE b

y      (35) 

 
 
where the { }yx,  coordinate system originates at the center of the circle; by which the x axis lies 
in the vertical direction of Fig. 2a, defining the center line of symmetry of the infinite plate 
conductor. Fig. 2b and 2c are the corresponding electrical potential and magnetic field. One can 
verify that 
 
 02 =∇ F ; 02 =∇ H  
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Fig. 2 Analytic solution of an infinitely large conductor plate containing a circular 
hole under a uniform electrical field ∞E  at remote; (a) model analyzed; (b) 
contours of the electrical potential; (c) contours of the magnetic field.  

.  
 
 
4.2 Solutions for the Contact Problems in Fig. 1b  

  
The problem to be analyzed in Fig. 1a represents two classes of physical contacts: I. a 

semi-infinite conducting substrate is in contact with a conducting body under a static electrical 
load; II. a semi-infinite elastic substrate in contact with a rigid body under a mechanical load. 
The former can be classified into the boundary-value problem governed by Maxwell’s equations 
for each individual conductor; for example, as illustrated by Fig. 1b, the semi-infinite substrate 
with the boundary condition described by the contact surface. The latter has been investigated 
thoroughly, for example, in [5,6,7,12], with benchmark solutions for different boundary 
conditions. Applying the  “conjugate solution formula” and the “congruity principle” introduced 
in the previous section, these benchmark solutions can be used to construct the solutions for the 
first class of problems with the boundary conditions on the contact surface, which can therefore 
be described by one of the following two expressions: 
 

(b1) given total electrical current flow ΣI  and electric potential on the contact surface 
axa ≤≤− , where the electrical potential can be expressed as a Taylor’s expansion: 

 
 ( ) ...2

210 +++= xaxaaxF    for axa ≤≤−      (36) 
 

(b2) given a reference potential at any material point and electric field density ( )xE y  on 

the contact surface axa ≤≤− . 
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The condition (b1) corresponds to the displacement boundary condition in mechanical contact 
whereas (b2) is the counterpart of the force boundary condition in linear elasticity. For (b1), the 
following additional boundary conditions are required: 

 




−−

Σ ∂
∂−==

a

a

C
a

a
y

C dx
y
F

dxEI σσ         (37) 

 
where ΣI  is the total electrical flow per unit thickness of the contact surface. Also, for both cases: 
 
 ( ) 0=zE y    when ax >  or ax −<    (38a) 
 
 
 ( ) ( ) 0=+ ziEzE yx   when ∞→z      (38b) 

 
In order to demonstrate the procedure, the problem of Fig. 1b has been solved with 

boundary condition (b1) and the following symmetric condition: 
 

  ( ) ( )iyxFiyxF +−=+        (39)  
 

For simplification, 1=a  and only the case of a constant electrical potential on contact surface, 
i.e. ( ) 0axF =  is solved. Under this condition, the corresponding linear elastic contact solution 
has the stress function in the following form [6]: 
 

( ) { }1ln
2

2 −±−= zz
Pi

z
π

ϕ  and ( )
212

'
z

P
z

−
±=

π
ϕ     (40) 

 
where P is the total force perpendicular to the surface; the positive or negative sign in (40) is 
corresponding to the contact with pressure or adhesion. Applying (23,24) to formulate the 
electrical stress function, ( )zEϕ , according to (40) and (39): 
 

 

( ) ( )[ ]1log1log 22 −−−−+= zzzzAEϕ       (41) 
 
 
where A is a real constant; accordingly, the harmonic function, Eψ , in the following form is 
chosen: 
 

[ ]12 2 −−= zAEψ          (42) 
  

Substituting (41,42) into (24) to obtain EU  and applying the following relations: 
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z
U

z
U

x
U EEE

∂
∂+

∂
∂=

∂
∂

,  
z

U
i

z
U

i
y

U EEE

∂
∂−

∂
∂=

∂
∂

    (43) 

 
Using the Congruity Principle: 
 
 

 ( ) ( ){ } 0
22 1log1log2 AzzzzA

H
iF C

z +−−−−+=+−
σ

    (44) 

 
 
where A0  is a constant; and then applying (3) and (43) to (44), the electrical current field yields 
 

 
1

4
2 −

=−
z

A
iEE yx          (45) 

 
Notice that, on the contact surface, i.e. 0=y , 1≤x : 

 
22 11 xixzz −±=−±  and 11 2 ≡−± xix     (46a) 

 
, so  

 0

21
arctan22 An

x
x

Ai
H

iF C
z +

�
�
�

�
�
�

±��
�

�
��
�

� −=+− π
σ

, ,...2,1,0=n    (46b) 

 
According to (36), (37) and symmetric condition (39), the constants A0 and A are determined: 
 

 
200
Σ−−= I

aA    C

I
A

πσ4
Σ=       (47)  

 
Applying the solution (44) to the case that electrical current flows from the substrate to the upper 
conductor, the corresponding normalized electrical potential and magnetic field are plotted in Fig. 
3a.b; where the zH~  varies from -1 to 1 inside the contact zone ( 1≤x ) whereas remains constant 
along the remainder of the real axis. The electrical field (45) coincides with the stress distribution 
of the contact problem, the second relation of (40), solved in [6]. As illustrated by the Fig. 5a, 
this function has two branches in its Riemann’s surface: the half plane RI  is corresponding to the 
Griffith’s stress solution of center cracked infinite plate; the half plane RII is corresponds to the 
two-dimensional mechanical contact solution (40) and the electrical field defined by (44). The 
component yE  of the latter is plotted in Fig. 4b.  
 

Fig. 5 is the c9h electrical potential distributions of two semi-infinite conducts contact 
each other over the line segment 0=y , 1≤x  according to (44); where the value of the 

conductivity Cσ in the upper semi-infinite conductor is a half of that in the lower plate. When the 
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upper conductor is finite, for example, a rectangular bar, the corresponding stress function for the 
mechanical problem has been given, e.g. in [1, 6, 11]. It is straight forward to construct the 
corresponding electrical solution applying the procedure introduced. 
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Fig. 3 The normalized electrical potential (a) and magnetic field (b) 

 for the contact problem in Fig. 1b 
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Fig. 4 Electrical field: (a) the two branches of the Riemann’s surface of (45) where the branch RII 

is corresponding the boundary value problem in Fig. 1b. (b) yE   according to (45). 
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Fig. 5 Contours of electrical potentials for the problem of contact between two 
semi-infinite conductors; on the contact surface 1≤x , 0=y  the electrical 

potential (36) is applied with 0 ,1 00 == ≠iaa  and the value of conductivity 
Cσ in upper semi-infinite conductor is one half of that in the lower plate. 

 
 
5. Conclusions 

This analysis reveals an intrinsic link between plane stress (or plane strain) linear elastic 
solution and two-dimensional electrostatic solution of Maxwell’s equations. This linkage can be 
stated as follows:  

I. Any plane stress/plane strain displacement solution with constant mean in-plane 
stress can be represented by a pair of harmonic functions, so each displacement 
component is identical to a two-dimensional electrical potential with 
corresponding boundary condition; this is termed “constant mean in-plane stress 
rule”. 

II. For any plane stress/plane strain solution, one can form a corresponding plane 
solution that satisfies the “constant mean in-plane stress rule” through the 
conjugate of its complex stress function; this procedure is termed “conjugate 
solution formula”.  

III. The two displacement components of a plane stress/strain solution obtained 
according to the “conjugate solution formula” are structurally identical to a two-
dimensional electrical field and accompanied magnetic field which satisfy the 
electrostatic Maxwell’s equations; this fact is termed “congruity principle”.   
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The congruity principle leads to a procedure to obtain analytical solutions of electrostatic 
boundary-value problem using Airy’s stress function and Muskhelishvili’s method. Examples of 
an infinite plate with a circular hole and a contact between a rigid conductor and a semi-infinite 
elastic conducting substrate have been analyzed.  
 

According to the framework of the classic elasticity theory, the “constant mean in-plane 
stress rule” is an additional constraint that requires the divergence of Galerkin vector’s Laplacian 
to vanish; whereas the “conjugate solution formula” describes the procedure of the Papkovich-
Neuber solution under this constraint. The approach developed in this paper also leads to an 
alternate way to obtain close form solutions of anti-plane strain elastic problems from plane 
stress/strain elastic solutions. 
 
Acknowledgements:  The authors would like to express their sincere gratitude to the support of 
US Office of Naval Research. 
 
 
Appendix I: Proof of (22) [34] 
 When no out-plane current: 0======== zz

C JEσ , the Maxwell’s equation IV of (1), 
JB Hµ=×∇ , becomes 
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where BH Hµ= . Under the two-dimensional conditions: 

 
0=== yxz HHE ,        (a2) 

 
by substituting (a2) into (a1) one obtains 
 

y
H

x
F

C
z

∂
∂=

∂
∂−

σ
,   

x
H

y
F

C
z

∂
∂=

∂
∂

σ
      (a3) 

 
which is the Cauchy-Riemann condition (14). Hence, F and corresponding zH form a 
holomorphic function: 
 

( )
C
zH

iFzf
σ

+−=          (22) 
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Figures Captions 

Fig. 1  The model analyzed: (a) a rigid conductor contacts a semi-infinite elastic conducting 
substrate under mechanical pressure and electrical load; the corresponding solutions of 
Maxwell’s equations can be classified as the boundary-value problems described by (b).   
  
Fig. 2 Analytic solution of an infinitely large conductor plate containing a circular hole under a 
uniform electrical field ∞E  at remote; (a) model analyzed; (b) contours of the electrical potential; 
(c) contours of the magnetic field.  
 
Fig. 3 The normalized electrical potential (a) and magnetic field (b) for the contact problem in 
Fig. 1b. 
 
Fig. 4 Electrical field: (a) the two branches of the Riemann’s surface of (45) where the branch RII 
is corresponding the boundary value problem in Fig. 1b. (b) yE   according to (45). 
 
Fig. 5 Contours of electrical potentials for the problem of contact between two semi-infinite 
conductors; on the contact surface 1≤x , 0=y  the electrical potential (36) is applied with 

0 ,1 00 == ≠iaa  and the value of conductivity Cσ  in upper semi-infinite conductor is one half of 
that in the lower plate. 
 
 
 


