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Abstract

A multi-dimensional phase field model of anisotropic polycrystalline has been
developed based on Ginzburg-Landau(GL) theory and a dislocation
representation of grain boundaries. In this model the order parameter refers to
the average amplitude of the density of electron gas; and a grain boundary is
treated as a generalized dislocation zone, distinguishing from bulk crystal. The
system free energy is constructed by Bloch’s wave functions in the form of
Ginzburg-Landau expansion with the coefficients that are a series of
combined functions of order parameter, its gradient, the angles of grain
boundary tilt and misorientation; whereby the interfacial “structural factor”
has been derived applying Peierls-Nabbaro’s dislocation potential. Hence,
these coefficents can be determined by either experimental calibration or first
principle computation. Two and three dimensional numerical examples of
single specie system demonstrate that the developed model is capable to
reproduce coarsening process.

Keywords: phase field models, grain growth, dislocations, interface, diffusion-induced
grain boundary motion (DIGM), analytical methods

1. INTRODUCTION
1.1 Phase Field Theory

Phase field model has been widely employed as numerical tools to reproduce
diffusion-based physical processes associated with the motions of interfaces in
heterogeneous system[1-12, 16-18]. For modeling and simulation of the microstructure
evolutions during grain solidification and coarsening, it can be considered as a continuum
description of the average over randomly atomic motions in a multi-phase polycrystalline
system, see the reviews, e.g. [11, 13-15]. In such a system, denoted as the domain €,
each grain is characterized by its physical state, e.g. the free energy that is the function of
an order parameter 7, and state variables such as temperature (7); where 77, is

normalized to be unit inside the k" grain but vanishing outside. So the free energy,
denoted as F , can be expressed as the following integral over the domain:
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where fis a function related to the free energy at each material element in bulk phase; /7~
is a function of the gradient of the order parameter so it characterizes the fluctuation at
grain boundary.

Hence, for a time-dependent process the evolution of free energy F is a function
of the evolution of order parameter and its divergence according to Ginzburg-Laudau
formulation [1-3]:
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where A and x are material’s constants. (2) essentially is a degenerated form of the
convection-diffusion equation in continuum fluid mechanics without convection.

In recent years, significant progresses can be found in the modeling of
solidification process. For binary systems or alloys with more than one components,
additional groups of order parameters have been introduced into phase field model [8].
The development of this class of theories, in conjunction with crystalline anisotropy, led
to better understanding the kinetics of interfacial motion for dendrite growth of single
grain [6, 9, 12, 19-23]. In order to describe the correlation between crystal deformation
and solidification, lattice elasticity has been implemented into free energy [22, 24]. Under
the time scales between atomic vibration and mesoscopic diffusion, in [22, 25, 26] elastic
interactions have been mediated through wave models. As a count part of continuum
theory, recently the molecule dynamics-based atomistic analysis [27-30] has received
increased attentions, leading to a new avenue to explore interfacial properties [6, 31-33].
Based on Ginzburg-Landau formulation, the liquid-solid interface models for various
crystal structures have been studied in [32, 37, 38]. Beyond solidification and coarsening,
phase field models have also been successfully applied for the simulations of martensitic
transformation, dislocations evolution, plastic deformation, crack growth and many
others[39-42]. Considering polycrystalline is a complex system[43], methodologies of
numerical schemes in computational materials and mechanics can be found, e.g. in [44-
55,77].

The process of grain coarsening is another primary focus of phase field
methods[11, 56-58]. For an anisotropic grain, a formulation of the free energy density
including crystallographic orientation is proposed in [10, 11, 59]:
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where ¥ is the angle between grain boundary surface (originally defined as solid-liquid
interface) normal and a specified direction, e.g. the x-coordinate in Cartesian system; &
is a specified orientation of crystalline so V@ is the “misfit” angle at grain boundary
between grains; /', g, and h are functions of 7 and @, respectively; ¢, s, and € are
coefficients to be determined. The equation (3) is termed “WKC model” in this paper



since it first systemically presents the free energy as a function of tilt angle y ,
orientation angle @, and the gradient of 4.

For a polycrystalline with ¢g grains that contain n species components at constant

temperature, a total free energy equation for isotropic system has been introduced in [7,
60, 61]:

q q
f= Z[——m+ nl]+7Zanm, F=§Z(Vm)2 4)
i=1

i= =1 j#i

where a , B are constants. In recent years, various phase field models have been

developed with different expressions of the free energy field, see the reviews, e.g. [11,
13-15].

However, in the modeling and simulation of coarsening process in anisotropic
polycrystalline system, challenge remains in obtaining precise formulation of free energy
and associated efficient numerical procedure without presumed parameters. Based on the
fundamental researches reviewed previously, this study develops an anisotropic phase
field model of polycrystalline coarsening, whereby grain boundary is modeled as a
general dislocation zone while the correlated scaling coefficients in the model are
calibrated by crystallographic-based analysis and associated quantum mechanical
computation. Hence, the derived formulation has closed form without arbitrary fitting
coefficient. Numerical examples in two and three-dimensional cases have been
performed to verify the theoretical model developed. For simplification, only the cubic
lattice system is taken into account.

1.2 Notations

Standard notation is used throughout. Boldface symbol denote tensor, the order of
which is indicated by the context. Plain symbols denote scalars or a component of a
tensor when a subscript is attached. Repeated indices are summed. For example, in
three-dimensional Cartesian system the three unit coordinate vectors are {el,ez,e3}. So a

vector £:
t=[t]=te +te,+t,e, or t=te,, i=12 (2D) or i=123 (3D)

b= [b] b.ee ; and

For two order tensors a and b: a = [aUJ a,e €€
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2 Proposed Model
2.1 Grain Boundary and Generalized Dislocations Zone

Coarsening essentially is the motions of grain boundaries determined by alloy’s
chemical composition, thermodynamic environment, and imposed force and displacement
conditions [1,2, 76, 49, 50, 66, 67]. Grain boundaries form a network of the interfaces
between crystals, representing discontinuities of the periodic atomic arrays. When an
interface distinguishes crystals from two different species, it usually forms a coherent or
semi-coherent boundary between matrix and second phase particles, e.g. precipitates and
inclusions; when an interface is in-between the crystals of the same specie, it defines a
grain boundary. In the following analysis, all of the two aforementioned geometric
“discontinuities” are termed “grain boundary”. From structural viewpoint, these
heterogeneities can be simply classified into the following categories[62]: titled, mis-
orientated, misfitted boundaries, and a combination of them with or without segregated
impurities (see Fig. 1a-1d).

Since a grain boundary represents a continuous deviation from a long-ranged
order of atomic array, which can also be viewed as a “generalized dislocations zone” that
includes accumulated dislocations and segragated atoms and empties. Such a “general
dislocation zone” is a low-ordered structure, i.e. periodically only along the directions
parallel to the interface between grains. Introductions of dislocation theory can be found,
e.g. in [63, 64].

An immediate consequence of such a generalized dislocation zone is the reduction

of adhesion energy. Let E" be the atomic coherent energy per unit area of a defect-free
crystal and E** the coherent energy of a grain boundary, then according to Fig. 1 this
reduction can be approximately expressed as a linear combination below:

Egh — Ecoh _AEtilt _AEmisore _AEmixfit _AE‘mgregate (5)

where AE™  AE™5  AE™" | and AE**4"“ are the deductions due to grain boundary
tilt, misorientation, misfit, and impurities segregations, respectively. Similarly, when a
grain boundary becomes a slip plane ( ¥ plane ), the corresponding energy barrier against
gliding, denoted as 5", will also be different from bulk phase:

ygB — ;/P i_ A}/rilt _Aymisore _Aymisﬁt _Ayxegregate (6)

where ¥, is Peierls’ energy barrier in bulk crystal; the rest terms are these the same as

that in (5). The reason for the “+” in the front of AY™ is that by certain tilt angle the
energy barrier against gliding can be higher than bulk phase; e.g. an anti-phase boundary
such as a twin. The deduction of adhesion energy from bulk phase to boundary causes the
changes of order parameter 77, in equation (1).

When a grain boundary is formed by multiple atomic layers, the total adhesion
energy per unit area can be expressed as
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where w is the width of the grain boundary, b is the average of the lattice constants from
the species of the both side of the boundary.

The proposed “generalized dislocation zone” model enables to apply the results of
plasticity for analyzing grain boundary’s motion. According to the historical development
of solid mechanics, “plasticity” is a theory that describes the average behavior of
dislocations-induced atomistic motion by analogy to fluid dynamic theory. The ideally-
perfect plasticity, an extreme case of solid, is also an extreme case of viscous flow. This
implies an underlying intrinsic connection between these two classes of phenomena,
leading to an avenue to combine well-established dislocation-based plasticity theories,
e.g. [65,66,78,79], and phase field model for modeling and simulation of anisotropic

grains coarsening.
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Fig. 1: Grain boundary heterogeneities

2.2 Geometric Representations of Grain Boundary: Misorientation and Tilt



For simplification this paper focuses on single specie polycrystalline system with
cubic crystal structure.

A key-issue in grain boundary analysis is to establish an ambiguity-free geometric
representation. A three-step superposition model is introduced for this purpose, which
starts with two adjacent grains A and B with the same lattice orientation, see Fig. 2a. The
final position of the grain boundary is obtained by the superposition of the following
three virtual motions: (i) an anticlockwise rotation of the grain B around [001] to obtain
misorientation angle y, , Fig. 2b; (i1) a clockwise rotation , around the actual position

of tlB " of B to define the tilt, Fig. 2c¢; (iii) a rotation of the interface surface with normal n4
from (001), to its actual position when the angle between ns and g’* to be 8 , Figs.

2d, where 8, is the angle with the minimum value among these between n4 and all
lattice orientations of grain B.

Similarly, the grain boundary representation can also be obtained through fixing B
while performing the virtual motions to the grain A, by which & is the angle with the
minimum value among these between n4 and all lattice’s orientations of the grain A.
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(@) (b) misorientation (c) tilt (d) surface rotation

Fig. 2 A grain boundary with tilt angle y, and misorientation \,, can be represented as
a superposition of three virtual motions: (a) two grains with coincided crystal orientation
initially; (b) an anticlockwise misorientation rotation y,, of the grain B around [001]4;
(c) a clockwise title rotation W, around the vector tlB* orthogonal to [001]g; (d) a
rotation of grain boundary surface to its actual orientation. Two Cartesian coordinate
systems: {t7,¢% g™ } and {¢%,¢% g™} are embedded in grain B and A, respectively.
The [001]p is chosen to be the lattice vector with the minimum angle to the grain



boundary normal n4. All vectors in (a)-(d) have the same unit length; however, they are
plotted with different sizes for easy views.

3. Electron Density-Based Expression of Order Parameter and Ginzburg-
Landau Theory

In phase field theories a challenge is to establish the quantitative relationship
between the order parameter 77, introduced in (1-3) and the atomic-electronic structure-
based energy measurements. In this section the density-functional theory [68, 69] and
Ginzburg-Landau’s formulation have be applied to derive a governing equation of the

anisotropic phase-field. Introduction of Ginsburg-Landau’s theory can be found, e.g. in
[50].

3.1 Electron density and general dislocation zone

According to density functional theory, the physical state of a material is
determined by the core structure of atoms and the statistic distribution of electrons’ spin
and orbits, which can be described by the density distribution of electrons, denoted as
p(r). The associated energy is the integration of p(r) over the system. Therefore, this

electron density essentially determines the order of the atomic system. For long-range
order crystal, e.g. in an infinite large bulk crystal A, the electron density can be expressed
by the Bloch’s theorem [70]

p*(r) =X expliK*-r) (8)

where K4 are the reciprocal-lattice basis vectors in bulk crystal; E,? are the coefficients
and r is position vector; the superscript “A” denotes the quantities associated with a grain
A. The sum in (8) is over all K* including K* =0.

When the grain A is defined within a finite domain Q ,, this study proposes a
Bloch’s formulation with order parameter:

pA(r)=Z;L7,?(r)exp(iKA .r)=nA(r)po(zAu;3 explik .r)J reQ, 9

where p, is a constant; n*(r) is the order parameter associated with grain A, which

actually is a scaling function that is constant inside the grain but varies at its boundary,
see Fig. 3; uj are the coefficients and u, =" p,uj .
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Fig. 3 A bicrystal system with the order parameters 7* and 7”

Considering the bicrystal system illustrated in Fig. 3: Q,, =Q, +Q, and
Q, N, =0. For simplification, it is presumed that both A and B are the same cubic
crystals but with different orientations, corresponding to two built-in Cartesian
coordinates {tlB*,tf’, ng*} and {tlB ,tf , ng}, respectively, as illustrated in Fig.2. In the

analysis thereafter a “crystal” refers a “grain” and vice versa. Similarly to (8), for the
grain B its electron density can also be expressed as:

pPr)=n"(r)p, > ug exp(iKB-r) reQ, (10)

Hence, the reciprocal-lattice basis vector K* defined in grain A can be expressed as K” in
the coordinate defined in grain B through a two-order rotation tensor Q*” :



KA:QAB-KB (11)
and

K*=Q™ K* where (") =0™ (12)

0"* is determined by the misorientation and title angles between two adjacent grains;
which, therefore, defines the transformation between two Cartesian systems
{tf*,tf’,ng*} and {tlB,tf,ng} in Figs. 3:

KB :QBA _KA
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n

(13)

3.2 Free Energy and Landau-Ginsburg Expansion
For the bi-crystal system in Fig. 3, according to Ginsburg- Landau’s theory, the
system free energy can be expressed in the form as [32, 37, 50]:

F=F+®,+®,+P, +.. (14)

where F, = F, (T) is a function only depending upon temperature 7; @ are the functions

of electron densities p”(r), p”(r). When re Q al
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where Y. means the sum of all reciprocal vectors K;',K} in grains A and B; a
K" K*

restriction to (15) is that this summation has to form closed polygons, i.e

iKﬁ Y (k) -0™ =0 (16a)

J=I+1

In this analysis, the following sufficient conditions of (16a) are applied:

n

Y(k?) 0" =0, (16)

1

> K;=0;
J=1 J=I+1
which ensures the free energy to be invariant when r varies inside a grain or moves from
one grain to another, allowing the periodic Block wave function to fit the discontinuity at
grain boundary through the order parameter 7. Therefore, (15), hence (14), is in fact a



generalized expressions of (1,3-4) including the effects of crystal structure and grain
boundary through reciprocal vectors under the restriction (16). More detailed discussion
about the Ginsburg- Landau’s expansion in periodic crystal can be found, e.g. in [50].

3.3 Functional Taylor’s Expansion

Obviously, at grain boundary the electron density (9) or (10) deviates from its
original periodic distribution in bulk phase. The corresponding change of free energy
should be related to the energy barrier against the atomic motion from long-ranged
periodic distribution to “dislocated” heterogeneity zone. As suggested in [68, 69],
functional analysis is an effective way to obtain the free energy with the best accuracy.
By this methodology a fluctuation from a reference state of the free energy is treated as
functional variation that has the maximum gradient along the direction normal to grain
boundary. The stationary solution provides the conditions to determine the coefficients in
(15). Analogy to the analysis in [35, 36], the functional Taylor’s expansion of (14) over a
domain Q is

AF =AF, +AF, +... 17
where [p]
OF
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I ) o(r)
_ L g F[p]

where p(r) can be either p”(r) or p®(r) or both of them. The functional variation of
p(r) in (9) or (10) can be expressed as a fluctuation from a reference state characterized

by 7,(r):

dplr) = dnlr)py i explik -r)=(1lr) =7 (r oy Xy expliK -r) (20)

which means, as presumed, at grain boundary the Bloch’s wave is scaled by order
parameter 77(r).

By choosing the reference state 7, (r) in (20) be the “zero” state, i.e. o (r)=0,

and omitting the terms with the order of K higher than 4 in (17), after tedious derivation it
can be proven that the secondary variation, i.e. (19), can be expressed as [32, 35, 37]:

AF2~k 2Py Ttz [ HK(sr&ﬁ(r)%a;i[f]g(z (Y V. ()| @1)

where “V ” is the gradient operator and the structure factor “ S(K)”, following the
terminology in fluid dynamics, is defined by



s)=[-¢,[x]" (22)

So C [K ], the fourier transformation of the “direct correlation function” C(po;r —r’) [35,

36], is the only term to be determined. A brief introduction of the derivation of (21) is
given by Appendix I.

By analogy with the theory of plasticity, in (19) the functional variation of the
electron density plays the similar role as strain whereas the secondary functional variation
in (19), or, alternatively, the “direct correlation function” C (po;r—r’) with the fourier

transformation in (21) and (22), is somewhat like a material’s stiffness matrix. This
analogy will be discussed further in next subsection.

On other hand, the first order variational (18) can be expressed as:

5F[p]
AF, = (dr® Sp(r)=2®, +30, +4P, +...... (23)
1 E[ 5p(r) ’ ’ )

Applying (16) and dropping the terms with the order of K higher than four:

AF, = 2®, + 4, (23a)

3.4 Structure Factor and Direct Correlation Function
In fluid dynamic analysis [34-36] the direct correlation function C (po;r —r') is

originally employed to establish the connection between particles based on their positions
and the bonding energy in-between, representing “stiffness” against motions of particles
in the system. Thus, an approximation has been made in this study is that, in the area near

or on the interface surface between two grains, é’(K ) can be expressed as a
dimensionless Peierls’ potential in the form of Bloch’s wave function as below [64]

C(K)= Z—O +Refiexpli2K |} (24)
p
where b is Burger’s vector; h, and h, are the amplitude of the Peierls’ energy barrier

and its mean value, respectively; both 4, and h, are defined as the energy per unit area;

Re(f) denotes the real part of the function f inside the blanket. For simplification one may
take, e.g.:

hy=—-*= (24a)



In (24) é‘(K ) is the fourier transformation of C(po;r—r’) whereas K is the reciprocal

vector corresponding to r. In cubic crystals there is no essential difference between
coordinates and reciprocal coordinates. The second term of (24) has the same structure as
its two-order derivatives (or integrals), which actually is the stiffness against edge-like
dislocation. The first term of (24), in conjunction with the constant term in the blanket on
the right hand of (22), represents the “stiffness” relevant to the change of “dilatation”
energy.

By substituting (24) into (22) and (21), applying (16) and omitting the terms with

the power higher than the fourth orders of K; then applying (13), the resulted equation,
together with (23a), leads to:

AF =~ pO jF dx® (25)

and
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where ul are the coefficients in (9) or (10) whereas the superscript A (=A,B) indicates

a

the grain. The first two rows of (25) are corresponding to the terms in (23a) and the third
row to (21); in the latter, after applying (24), the coefficients a,;, b,, yield:
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Notice that vn* is parallels to n, and
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In cubic system



Vn,|=|V6| (26)

where @ is the angle between n, and a reference direction, e.g, one specified lattice
direction, so it can be the tilt angle. Hence, the term 7VV 7 in (25) represents the effect of
variation in tilt angle, in other word, the change of grain boundary curvature. By
substituting (26) into (25), one can find that the latter has the similar expression as the

free energy (3) obtained in [10, 11, 59] but with €=0. We will discuss this point again in
next section.

Also, the grain boundary (surface) energy per unit area A can be calculated
approximately by applying of (25):

_AF /’o" L] Fyr 27
A

where the one-dimensional integration dr is along the direction perpendicular to grain
boundary over the length scale “w” that represents the thickness of surface layer.

3.5 Short Range Interaction

Since in this study a grain boundary is viewed as a disordered generalized
dislocation zone between two long-range ordered atoms arrays, the short-ranged atomic
interaction may dominate its diffusion and mechanical behavior. Hence, in the expansion
(25) the part constructed by the reciprocal vectors that span primitive cell (the first
Brillouin zone) may provide satisfactory precision for computing the fluctuation of the
free energy. This postulation is termed the “approximation of short-range interaction” in
this paper. On other hand, by performing a rotate or a translate operation to the

Cartesian’s coordinate in a crystal, i.e. choosing K ,, K 5 from different coordinates, the

free energy (15) and its fluctuation (25) must be invariant, which leads to the
normalization principle suggested by Karma et al. (Ref.[31] in [13], also see [32]):

A
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whereby an natural choice is to let each coefficients on the right hand side of (28a,b)
proportional to the projection of the corresponding reciprocal vector onto the outer



normal vector of grain boundary surface. This is because the functional Taylor’s
expansion (17) describes the fluctuation of free energy; the gradient of this fluctuation is
the outer normal vector that defines a grain boundary.

As examples, the BCC and FCC crystals, respectively, are picked to compute the
coefficients in the proposed free energy formulation.

3.5.1 BCC Crystal
For BCC crystal, the reciprocal vectors corresponding to the lattice vectors that
span its primitive cell form a FCC crystal cell. They belong to the group of vectors

<L L0> that contains the following 6 pairs satisfying (16):

2b°2b

L,L,O d —L,— ! 0], ! 0, ! and | — ! ,O,—L
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| 2b72b 2b° 2b | 26" 2b 2b°2b

Lol _ a1 11 L

20" 2b 26" 2b |’ 207 2b " 2b°2b

For example, considering the coefficients related to the grain A in Fig. 4, where
.., is the angle between the outer normal vector n, of the grain boundary and

[a,b,c] direction of the crystal A; then the coefficients in (25) or (28a) yield

6

Z{AA W s }: zﬁ for A=AB (30a)
K/\

Ky Ky 0K +Kp T

where
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3.5.2 FCC Crystal
For FCC crystal, the reciprocal vectors from the vectors that span its primitive cell

form a BCC structure; which is a group of vector LLL where the following 4
2b 2b 2b
pairs satisfy (16):

1 1 1 1 1 1
_,_,_ and __’__’__ b
2b 2b 2b 2b 2b 2b

d
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4. Coefficients in Phase Field Model and Atomistic Computation
4.1 Surface Energy and Stacking Fault Energy
After applying (29-31) there are still two undetermined coefficients in (25): the

13 29

reference density coefficient p, and an implicit length scale “w” that characterizes the

thickness of interface surface layer between grains B and A. The latter determines the
amplitude of the gradient V77 on a boundary. These two coefficients can be calibrated if

the amplitude of interface surface energy (27) is known for at least two cases in a one
specie polycrystalline system.

The first case is that grain A and B have the same orientation but with misfit in
atomic positions. The corresponding grain boundary is created by a shift of grain B in a
direction tangential to the grain boundary surface, which can be considered as a stacking
fault (incomplete edge dislocation) with the corresponding locally stored dislocation
energy less or equal Peierls’ energy barrier. When such a shift occurs over multiple
atomic layers, according to (24) the upper bound of the accumulated energy per unit
surface area is:

nyp =2nh, (32)

where 7, is the Peierls’ energy barrier with the dimension of energy per unit area and n,

is the number of piled atomic layers with the stacking faults. The second case is that grain
B vanishes, which can be considered as the extreme case that the grain boundary is
formed by vacant sites with very large widthness, so such a grain boundary is identical to
the free surface of grain A to vacuum with a surface energy y,. Once Y, and y, are

known, p, and “w” are fixed.



Many sophisticated considerations that bridge phase field model and atomistic
computation can be found, e.g. [27, 32, 70-73]. This study suggests using the density
function theory-based quantum computation [70, 72, 74] to compute ¥, and 7y, . Fig. 4a
explains the process to compute ¥, : which is the difference in total energy between two

states of the system: the equilibrium positions and that separated into two half of atomic
slabs. This is because the work required to split the atomic supercell is the coherent
energy E“" that is transformed into the energy to form two new surfaces, i.e.

E“" =2y, (33)

Figs. 4b,c show such a half atomic cell splitted along [001] direction and the
corresponding electron charge density p(r) on (110) plane. Fig. 5 is the supercell to

compute the slipping-induced dislocation along [TTI] direction and the corresponding

energy barrier. Examples of BCC iron and FCC Aluminum crystal are computed and the
results are listed in table 1.

Table I
Fe(bce) J/M” Al(fce) I/M?
Eeat 2.715 0.93
yslool] == |~
¥, =~ 0.49 0.17

free surface

electron/a.u.?

10

' 758578

57544

atam-slab iP5 ot
3N

251180

1 90546

|:> 1 44544

1.08648

0831764

Y DiTees

EO i3 0383078
0275473

0.20883

0.158489

0120276
0012011
0.0591831
0.0524807
=1 00398107
= o] 0.0301995
= 9 0.0220087
Eﬂ E‘l + - f'S 0.017378
E 0.0131826

A J_ 0.0
bulk crystal
a) atomic supercell for surface by Half supercell of ¢} Charge density distribution (110}
enerdy computation bce iron section near {001) plane

Fig.4 Computation of surface energy and charge density distribution
near (001) free-surface of BCC iron



Fig. 5 Supercell used for computing Peierls’ energy barrier in BCC crystal

By substituting obtained ¥, and 7, into (27) and expanding »* into Fourier series

across the thickness of grain boundary layer w, under certain approximations the
following relations are finally reached:

P we ks, (34)
" bk,Tk, 2%,

where bis Burger’s vector; k, ky are constants and k is about unit. It should be noticed
that according to Fig. 3¢ the grain boundary width “w” in (34) is the interval where the
order parameter 0 <7 <1. It is much greater than the visible “grain boundary”, denoted
as w, , which represents the significant disorder of atomic positions. Usually,

w, =0.3-0.5w.

The derivation of (34) and detailed expressions of the constants are given by
Appendix II.

5. Computer Implementation and Numerical Results
For single specie cubic polycrystalline system, by substituting (34) into (25) the
latter becomes:

AF =&, [ax*{f,(7.6)+ TV . V.0, )} (39)
and
K, =10, K, =27°b’ (35a)
2bk,
A A
H0.0)= Y T2 24a ' +4 Y T2 f i) (35b)
A=AB I U, AA=AB I U,

F(?],V?],Vzﬂ, 6, y/)z Z%’b,[(cose," )Z‘Vn/“z +77A‘V77AHV9,A” (35¢)
1 Yy

A=AB u.



A

o} =cos'(11§i\~nl\j (35d)

defined by (29-31)

A LN 1N
Uy = ‘cos Oy cosO”y

it = Z,: ul defined by (28)

a,=1- Z—O —sin>(27|K, ) defined by (24)
p

b, = cos* (27K |)

where bis Burger’s vector; K, is a constant coefficient; A, and hp are average Peierls’
energy and height of the energy barrier, respectively; so h, =7, ; 8} is the angles

between surface normal nr, and reciprocal vector K;* in grain /4 ; in cubic system K;'

).

), and angles 8 essentially represent the effects of grain boundary

coincides one of crystal orientations of the grain. Thus, the functions sin(2ﬂb|K ,
cos(2ﬂb|K ,
misorientation and tilt in phase field evolution.

Based on the analysis of [4, 7, 59] in the numerical simulation performed in this
research the Ginzburg-Landau’s kinetic has been applied:

on  OAF o aesa [ Ox
on __oal _ Yarpy pripn | 22 36
ot 87] KSA:ZA,B; b_le i 7 877 ( )

where the subtraction of the second term on the right hand side ensures the evolution law
(36) is within the framework of generalized diffusion equation, like, e.g. (2).

Following the idea developed in [59], the Ginzburg-Landau’s kinetic for the
evolution of surface angler is given by

00, _ 2 OAF
ot 06"

<lo* -] &)

where A’ denotes the grain A’ adjacent to grain A ; the norm of a second order tensor A

is expressed as ||A|| = \/AU2 + A222 + A332 .

5.1 Anisotropic Case: Comparison with WKC Model
By comparing (40) with (3), the WKC model[10, 11, 59], one can find that (35)
and (3) will coincide each other when the following relations hold:



F@.T),,5 = &, £(1.6),,55 (38a)

and
TV, 0-y)=—Kx; 3 Zbi—%b,(cosﬁ,/\)z‘VnA‘z (38b)
A=AB 1 Uy
A 82
sg(n)=—x,x Y Zb%(b,[nA‘Vn"‘VH,A], Th(n)=0 (38¢c)
A=AB I U,

The term in the second relation of (38c) is introduced in [10, 11, 59] for the rotation
between misfitted grains, which is taken care by kinetic relation (37) in this study.

5.2 Isotropic Case
Under this condition: cosg® =1 and u2, =uJ, for any pair of {I,J} in (35). Then
by comparing (40) with (4), one can find that the following relations hold:

2
—ﬁ(2+a,)’ }/—87,3 ) ﬂ:;/, K‘:M (39)

o= =
bk, bk, k,

However, the term ﬂA‘VﬂAHVH,A‘ in (35) has no its counterpart in (4). ‘VH,A‘ 18

proportional to the inverse of grain boundary curvature and it usually is a higher order
small quantity as compared with other terms.

5.3 Numerical Results

The Ginzburg-Landau expression of free energy (35) and the phase field kinetics
(36, 37) have been implemented into a finite difference computer code. The experimental
result of Naval Research Laboratory [75] provides a set of discretized data of a single
specie polycrystalline system, which has been used as the initial condition for the grain
coarsening simulation.

We first consider isotropic case, investigating the relationship between grain
boundary thickness and the coefficients in the free energy (35). Fig. 6a shows examples
of a single specie system by which a square grain contains a circle grain with two
different pre-assigned grain boundary thicknesses (w). The square is discretized by
269x269 interpolating points with a uniform spacing “h” in-between. The model on left
has the initial w=15h whereas on the one on right the initial w=4h. Plotted in Fig. 6b

are the evolutions of the boundary thicknesses, i.e. “w”, for four different pre-assigned
initial values with pre-assigned x, =1 and x; =2 . As demonstrated by the figure,

13 »

regardless initial value “w” approaches to the same value within the first 10 time
increments for all four cases; which proves that the phase field formulation leads to stable
grain boundary thickness during coarsening when its coefficients are fixed. In the
computations demonstrated in this paper, the thickness “w” is defined as the width of the



strip within which the production of the order parameters 7* and 77° from two adjacent
grains is less than 0.9, see Fig. 3c.

According to (35a) and (34):

z’ 27 [y,
KKy =—Y,b=7,k, k. = 8 (40)
rKs k, Vpb =YpK,W w kok(st

On other hand, in (35) the product xgk, scales the gradient term F(V?],Vzn,...). The

second equality in the first relation of (40) indicates that this product coincides to the
energy dissipation when a dislocation passes a distance “ wk_  ”. Hence, it can be

anticipated that this product essentially controls the grain boundary thickness in the phase
field model. In order to verify this prediction, plotted in Fig. 7a are the four computations
of the two-grain system in Fig. 6 with the same initial thickness and fixed coefficients:

Ve k, =1, T _ 3; but varying b = 0.5, 0.7, 1., 1.4. Different grain boundary thickness,
S

“w”, have been obtained after tens time steps. On contrast, Plotted in Fig. 7b are the

results from the same examples in Fig. 7a but the computed grain boundary thickness has

been normalized by the product of &k, . As expected, they approach to the same value.

LI, s
Ej ——1\ |,
J 1 — = -
z 4rime stc: H ]
(a) (b)

Fig. 6 Bi-grain system for numerical test: (a) two assigned initial grain boundary
thickness w= Nh for N =15 and N =4, respectively; (b) changes of grain boundary
thickness when time step increases; the four computations with different initial
thicknesses converge into the same value. In these computations: x, =1 and x; =2 are

taken.
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(a) (b)

Fig. 7 The relationship between the coefficients &, k& and the computed grain

boundary thickness w = Nh ; where k. scales the amplitude of free energy in grain and
the product & &, scales the energy associated with the gradient of order parameter.

Multiple two-dimensional computations of polycrystalline system have been
carried out for three cases: (i) isotropic grains; (ii) two-dimensional grains with titled
orientation; (iii) a two dimensional slice of three-dimensional grains with grain boundary
title and misorientation. The results are plotted in Fig. 8. For the anisotropic cases the
initial orientation of grains is assigned according the experimental results performed in
Naval Research Laboratory[75], so in these figures the colors represent the angle between
the y coordinate and [010] direction for (ii) and (iii). These results demonstrate that the

crystal anisotropy does bring up differences. A remarkable trend is that in the isotropic
system (i) the grain growth is relatively “homogenous”, since after a while of coarsening
some small grains are still there whereas they disappear in other two cases. Also, in
anisotropic system it seems that the propagation of low angle grain boundaries ( the
border between adjacent grains with similar colors) is faster than that of the high angle
grain boundaries ( the border between adjacent grains with higher contrast in colors);
which results in larger individual grains. This could be a reason for the abnormal grains
in experimental observations. The three dimensional computation in Fig. 9 is based on
the initial condition of NRL experiment[75]. The example in Fig. 10 is computed by a
random pre-assigned initial condition, which provides the view of the coarsening inside
the polycrystalline.
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1
0947368
0894737
0842105
0.789474
0.736842
0684211
0631579
0578947
0526316
0473684
0421053
0.368421
0315789
0263158
0.210526
0.157895
0105263
00526316
0

initial distribution (t=0) X

Yy Joro]
&)

X
[Loo]
After 3x104 time steps
Fig. 8 Comparison of phase-field simulation based on (40) for (i) isotropic grains; (ii)
grains with titled angles in 2D plane; (iii) a 2D slice of 3D grains with grain boundary
title and misorientation. These results show a trend that isotropic approximation leads to
relatively “homogenously” grain growth whereas abnormal-sized grains appear in
anisotropic cases.

(a) time step = 100 (b) time step = 80000
Fig. 9 An example of 3D phase field simulation at two time steps; the NRL experimental
result[75] is used to give initial grain sizes and distribution.



(a) initial (b) 15000 steps (c) 30000 steps
Fig. 10 Another 3D example with randomly initial condition; the polycrystalline slab is
sliced into 5 sections to view inside the slab; the “thick” grain boundaries are those
interface surfaces which are almost parallel to section.

6. Conclusions

A challenge in phase field modeling of grain coarsening is to establish the
quantitative relationship between mathematic expression of free energy field and the
complexities caused by grain boundary geometry, crystallography and the criteria to
define associated energy measurements. In this study a “generalized dislocations zone” is
proposed to model grain boundary while phase field order parameter is assigned as a
scaling factor of electron gas density distributions in crystals. The difference in
orientations between the two adjacent grains is considered in general as a superposition
of a clockwise misorientation rotation, an anticlockwise title rotation, and a rotation of
grain boundary surface. Ginzburg-Landau expansion has been applied to describe free
energy and it fluctuation at grain boundary; in which the Peierls-Nabbaro’s dislocation
potential defines a “direct structure factor” that characterizes the order of atoms position
in solid crystals. For coarsening process, this structure factor essentially governs the
stiffness of grain boundary. Therefore, in the proposed phase field model of anisotropic
grain coarsening, all coefficients in the free energy formulation can be determined
through crystallography analysis and Ab Initio quantum mechanical computation or
molecular dynamic simulation. In the proposed phase model the coefficients are fixed
according to the amplitudes of stacking fault energy ¥, and surface energy 7,

Analysis of BCC iron and FCC aluminum have been conducted, indicates the
“theoretical” grain boundary thickness w to be approximately proportional to the product

of Burger’s vector “b” and the ratio 2y,/y, . The product 2by,/7, is the scaling

parameter to the gradient part in the proposed phase field free energy. This “theoretical”
thickness represents the interval where the order parameter neither vanishes nor be unit;
hence it is usually about two to three time greater than visible grain boundaries thickness.
The obtained conclusions have been verified by the numerical computations for a
bicrystal system with different Burger’s vector. The performed two- and three-
dimensional polycrystalline computations demonstrate the proposed anisotripic
formulation is applicable for large scale simulation. The developed phase field model
can be considered as an extent of the combination of the achievements reported in [1-15].



Appendix I: Derivation of (21,22)
The relation (19), i.e. the secondary variation of (17), can be expressed as
Ornstein-Zernike relation ( see [36], eq.66):

M:kﬂﬁ(f—”—c(po;r-ﬂ} @)

p(r)dp(F) 0

where C (,00 :x —X) is a direct correlation function to be determined, corresponding to an
interface surface with an outer normal n; p, is a constant coefficient in (10,11). The first

term on the right hand of (al) is relevant to the dilatation stiffness whereas the second
term is correlated to shear modules. According to [32, 36], when
C(po;r —F)=C(r- F)/p0 , its Fourier transform, i.e.

3[@} = % - dr3C(r)exp(iK -r) (a2)
Po Po PO g

can be expanded into Taylor’s series in the power of K *:

CIK]=C, K]+ CIK]K* +C[K]K* +...

(a3)
=a,+o,K’ +a,K* +...
Hence
2°ClK
E)K[2 | =2a, +12,K” +... (ad)
so (a2) can be rewritten in the form as
2 A 4 A
ClK]=«, + LI CIK] C[f]KZ _ 3 ICIK] C[4K]K4 + (a5)
2 0K 24 0K

On other hand, by substituting (al) into (19):

k,T
AF, ="2
2

[ [dr*dF* =) cpyir -7) (ool )p(F) (a6)

0



The coordinate r and 7 can be related each other by 7= f(r) where f(r) is an arbitrary
one to one mapping, e.g. f(r)=—r. According to the derivation presented in [36], by
applying Fourier transformation “3 ” to (a6) with convolution, it becomes:

3[AF, |= k”% a3 Z[l —&(&)bp(k)sp(R) (a7)
Q K,K

where the upper hat denotes Fourier transformation and K=f (K).

For an arbitrary square-integrable function ¢(¥) in real space Rand ¢(F) is with
C, continuity where N >2, e.g., ¢(7¥) = dp(7)dp(f (7)), the following relations hold:

q(F)= [4(K)exp(-iK -F)dK (a8)
V:q(F)=-iK [§(K)exp(-iK -F)dK (a9)
V; V:qlF)=—K K [§(K)exp(~iK -F)dK (al0)

On other hand, when 7, (r)=0in (20) and 7 = f(r)=—r, K= f(K), one has

V.0 P)op (PN =17, [ e ()i + (R, (e (£ ()}

po2 zuKuf(K) exp(i(K +f(K))'r)
K.f(K)

=V; [771< (”)ﬂx (’7)],002 I(ZI:Z”K”R50,K+I?

(all)

By substituting (a3) into (a7), performing inverse Fourier transformation and applying
(a8-all), after omitting the terms with the order of K higher than two the (a6) can be
written in general:

AF, = K5y Zukqudr3[(l_ao )’71{ (r)ﬂ,; (r)+a2V-( K(r)vﬂg (I‘))] (al2)

2 KK Q
where the relation (16), hence 77, F)=n z (r), have been applied.

The (al2) can be rewritten in the following alternated expression:

" See page. 159 in [36], equation (67) and following analysis



. ksTp, 3| 1 () (r) lazé[K]K2 _
AF, == g}u,zu,(cso,m;g[dr SBRERTE i (V7. V7. ()| 1)

where the structure factor S(K) is defined by

s)=[-¢, &’ (22)

Appendix I1

Noticing that the gradient Vp* is perpendicular to grain boundary so v* = n‘v nA‘
where n is grain boundary normal. As illustrated in Fig. 3¢, »* varies from 1 to 0 which
defines a grain boundary, so one may define a coordinate r varies from O to w to cross
over the boundary layer accordingly. Then, »* can be expanded into Fourier series across
the thickness of grain boundary layer:

”A(r)=;|:776\ +i77;\ COS(WH for re [O, W] (b1)

w
with

2 AP Al e
= A )5 Fo Sl Pl ) N
0

When the grain boundary outer normal n coincides [OO 1] and (24a) applies:

w=knb (b3)

cos®) =1 (b4)
1

a,=1-E, = 5 b, =2°b’E, =21°D’ (bS)

In (b3) b is Burger vector and k; is a constant. Substituting (b3,b4,b5) into (b2) and
performing the integral over the interval [0, w], we finally obtain:

ks 7P = pOkBTk.rbk() (b6)



where

b=3ld~] & : FT 2.) ) (b7)
0 [(UA) +27r2b2(‘V77A‘ +7]A‘V277AD}

Hence

—_ 7 (b8)
Po bk Tk,

The second case is free surface. Under this condition the grain B vanishes and the
left hand side of (34) becomes Y. Assuming that the thickness w is the same as that in

(b8):

Ys = PokpTk bk, (b9)

where
AV A
) ljgd( )2(77 J+alp) + b10)
b2 \w [(77*‘)2 +27r2b2UV77*“ +77A‘V277Am

Omitting tedious calculation, we finally obtain

Yorls where k="o (b11)

b 7 ki

For the grain boundaries with the heterogeneities illustrated in Fig. 2, by applying
(5a-5d) and (32a) an alternative form of (39) is

RAAPOR e S (b12)
So all coefficients of (25) are fixed and the scaling function n*, i.e. the order parameter,
is to be determined by phase field solution.

By omitting the terms for n>2 in (bl), the coefficient on the right hand side of
(b12) becomes



2
4.25+0.25 *7:4(1’)

k ~ W

2
2.03+0.125%* 7[4(19]

w

Substituting this relation into the first equality of (b12), one finds:

GB
Wt _E (b13)

b v, Vs

Substituting (b13) into (35a), one obtains the alternative expressions of the
coefficients as following

2 2
and
Kk, =¥, (wk,) or Kk, =b(y,k,) (b15)
where
k= ip—:(;—:} and k, = ”ZE" (b16)
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