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Abstract 

A multi-dimensional phase field model of anisotropic polycrystalline has been 
developed based on Ginzburg-Landau(GL) theory and a dislocation 
representation of grain boundaries. In this model the order parameter refers to 
the average amplitude of the density of electron gas; and a grain boundary is 
treated as a generalized dislocation zone, distinguishing from bulk crystal. The 
system free energy is constructed by Bloch’s wave functions in the form of 
Ginzburg-Landau expansion with the coefficients that are a series of  
combined functions of order parameter, its gradient, the angles of grain 
boundary tilt and misorientation; whereby the interfacial “structural factor” 
has been derived applying Peierls-Nabbaro’s dislocation potential. Hence, 
these coefficents can be determined by either experimental calibration or first 
principle computation. Two and three dimensional numerical examples of 
single specie system demonstrate that the developed model is capable to 
reproduce coarsening process.  

 
Keywords: phase field models, grain growth, dislocations, interface, diffusion-induced 
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1. INTRODUCTION 
1.1 Phase Field Theory 

Phase field model has been widely employed as numerical tools to reproduce 
diffusion-based physical processes associated with the motions of interfaces in 
heterogeneous system[1-12, 16-18]. For modeling and simulation of the microstructure 
evolutions during grain solidification and coarsening, it can be considered as a continuum 
description of the average over randomly atomic motions in a multi-phase polycrystalline 
system, see the reviews, e.g. [11, 13-15]. In such a system, denoted as the domain Ω , 
each grain is characterized by its physical state, e.g. the free energy that is the function of 
an order parameter kη  and state variables such as temperature (T); where kη  is 
normalized to be unit inside the kth grain but vanishing outside. So the free energy, 
denoted as F , can be expressed as the following integral over the domain:  
 
 ( ) ( )[ ]��

Ω

∇Γ+=
k

kk TTfdVF ,, ηη       (1) 

 



where f is a function related to the free energy at each material element in bulk phase; Γ  
is a function of the gradient of the order parameter so it characterizes the fluctuation at 
grain boundary.  
 

Hence, for a time-dependent process the evolution of free energy F is a function 
of the evolution of order parameter and its divergence according to Ginzburg-Laudau 
formulation [1-3]: 
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where λ and κ  are material’s constants. (2) essentially is a degenerated form of the 
convection-diffusion equation in continuum fluid mechanics without convection. 
 
 In recent years, significant progresses can be found in the modeling of 
solidification process. For binary systems or alloys with more than one components, 
additional groups of order parameters have been introduced into phase field model [8]. 
The development of this class of theories, in conjunction with crystalline anisotropy, led 
to better understanding the kinetics of interfacial motion for dendrite growth of single 
grain [6, 9, 12, 19-23]. In order to describe the correlation between crystal deformation 
and solidification, lattice elasticity has been implemented into free energy [22, 24]. Under 
the time scales between atomic vibration and mesoscopic diffusion, in [22, 25, 26] elastic 
interactions have been mediated through wave models. As a count part of continuum 
theory, recently the molecule dynamics-based atomistic analysis [27-30] has received 
increased attentions, leading to a new avenue to explore interfacial properties [6, 31-33]. 
Based on Ginzburg-Landau formulation, the liquid-solid interface models for various 
crystal structures have been studied in [32, 37, 38]. Beyond solidification and coarsening, 
phase field models have also been successfully applied for the simulations of martensitic 
transformation, dislocations evolution, plastic deformation, crack growth and many 
others[39-42]. Considering polycrystalline is a complex system[43], methodologies of 
numerical schemes in computational materials and mechanics can be found, e.g. in [44-
55,77]. 
 
 The process of grain coarsening is another primary focus of phase field 
methods[11, 56-58]. For an anisotropic grain, a formulation of the free energy density 
including crystallographic orientation is proposed in [10, 11, 59]: 
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where ψ  is the angle between grain boundary surface (originally defined as solid-liquid 
interface) normal and a specified direction, e.g. the x-coordinate in Cartesian system; θ  
is a specified orientation of crystalline so θ∇  is the “misfit” angle at grain boundary 
between grains; � , g, and h are functions of η  and θ , respectively; α, s, and ε are 
coefficients to be determined. The equation (3) is termed “WKC model” in this paper 



since it first systemically presents the free energy as a function of tilt angle ψ , 
orientation angle θ , and the gradient of θ .  
 

For a polycrystalline with q grains that contain n species components at constant 
temperature, a total free energy equation for isotropic system has been introduced in [7, 
60, 61]: 
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where α , β  are constants. In recent years, various phase field models have been 
developed with different expressions of the free energy field, see the reviews, e.g. [11, 
13-15]. 
 
 However, in the modeling and simulation of coarsening process in anisotropic 
polycrystalline system, challenge remains in obtaining precise formulation of free energy 
and associated efficient numerical procedure without presumed parameters. Based on the 
fundamental researches reviewed previously, this study develops an anisotropic phase 
field model of polycrystalline coarsening, whereby grain boundary is modeled as a 
general dislocation zone while the correlated scaling coefficients in the model are 
calibrated by crystallographic-based analysis and associated quantum mechanical 
computation. Hence, the derived formulation has closed form without arbitrary fitting 
coefficient. Numerical examples in two and three-dimensional cases have been 
performed to verify the theoretical model developed. For simplification, only the cubic 
lattice system is taken into account. 
 
 
1.2 Notations  

Standard notation is used throughout. Boldface symbol denote tensor, the order of 
which is indicated by the context.  Plain symbols denote scalars or a component of a 
tensor when a subscript is attached.  Repeated indices are summed.  For example, in 
three-dimensional Cartesian system the three unit coordinate vectors are{ }321 ,, eee . So a 
vector t:  
 
      [ ] 332211 eeet tttti ++==     or iit et =  ,   2,1=i   (2D)   or   3,2,1=i   (3D)     
 
For two order tensors a and b: [ ] jiijij aa eea == , [ ] jiijij bb eeb == ; and 
 

[ ] jikjikkljiljikjlkiljikkjik babababa eeeeeeeeba ==⋅==⋅ δ ,  

[ ] lkjiklijklij baba eeeeab ==  

[[[[ ]]]] ijijijij baba ========⋅⋅⋅⋅⋅⋅⋅⋅==== baba :   

            
 



2 Proposed Model   
2.1 Grain Boundary and Generalized Dislocations Zone  

Coarsening essentially is the motions of grain boundaries determined by alloy’s 
chemical composition, thermodynamic environment, and imposed force and displacement 
conditions [1,2, 76, 49, 50, 66, 67]. Grain boundaries form a network of the interfaces 
between crystals, representing discontinuities of the periodic atomic arrays. When an 
interface distinguishes crystals from two different species, it usually forms a coherent or 
semi-coherent boundary between matrix and second phase particles, e.g. precipitates and 
inclusions; when an interface is in-between the crystals of the same specie, it defines a 
grain boundary. In the following analysis, all of the two aforementioned geometric 
“discontinuities” are termed “grain boundary”. From structural viewpoint, these 
heterogeneities can be simply classified into the following categories[62]: titled, mis-
orientated, misfitted boundaries, and a combination of them with or without segregated 
impurities (see Fig. 1a-1d).  

 
Since a grain boundary represents a continuous deviation from a long-ranged 

order of atomic array, which can also be viewed as a “generalized dislocations zone” that 
includes accumulated dislocations and segragated atoms and empties. Such a “general 
dislocation zone” is a low-ordered structure, i.e. periodically only along the directions 
parallel to the interface between grains. Introductions of dislocation theory can be found, 
e.g. in [63, 64].  
 
 An immediate consequence of such a generalized dislocation zone is the reduction 
of adhesion energy. Let cohE  be the atomic coherent energy per unit area of a defect-free 
crystal and gbE  the coherent energy of a grain boundary, then according to Fig. 1 this 
reduction can be approximately expressed as a linear combination below: 
 

segregatemisfitmisoretiltcohgb EEEEEE ∆−∆−∆−∆−=    (5) 
 
where  , , , misfitmisoretilt EEE ∆∆∆ and segregateE∆  are the deductions due to grain boundary 
tilt, misorientation, misfit, and impurities segregations, respectively. Similarly, when a 
grain boundary becomes a slip plane ( γ  plane ), the corresponding energy barrier against 
gliding, denoted as GB

Pγ , will also be different from bulk phase: 
 
 segregatemisfitmisoretilt

P
GB
P γγγγγγ ∆−∆−∆−∆±=    (6) 

 
where Pγ  is Peierls’ energy barrier in bulk crystal; the rest terms are these the same as 
that in (5). The reason for the “ ± ” in the front of tiltγ∆  is that by certain tilt angle the 
energy barrier against gliding can be higher than bulk phase; e.g. an anti-phase boundary 
such as a twin. The deduction of adhesion energy from bulk phase to boundary causes the 
changes of order parameter kη  in equation (1). 
 
 When a grain boundary is formed by multiple atomic layers, the total adhesion 
energy per unit area can be expressed as  



 

b
w

EE gb

w

gb =�         (7) 

 
where w is the width of the grain boundary, b  is the average of the lattice constants from 
the species of the both side of the boundary. 
 
 The proposed “generalized dislocation zone” model enables to apply the results of 
plasticity for analyzing grain boundary’s motion. According to the historical development 
of solid mechanics, “plasticity” is a theory that describes the average behavior of 
dislocations-induced atomistic motion by analogy to fluid dynamic theory. The ideally-
perfect plasticity, an extreme case of solid, is also an extreme case of viscous flow. This 
implies an underlying intrinsic connection between these two classes of phenomena, 
leading to an avenue to combine well-established dislocation-based plasticity theories, 
e.g. [65,66,78,79], and phase field model for modeling and simulation of anisotropic 
grains coarsening. 
    
 
 

 
Fig. 1: Grain boundary heterogeneities 

 
 
2.2 Geometric Representations of Grain Boundary: Misorientation and Tilt 
 



 For simplification this paper focuses on single specie polycrystalline system with 
cubic crystal structure.  
 

A key-issue in grain boundary analysis is to establish an ambiguity-free geometric 
representation. A three-step superposition model is introduced for this purpose, which 
starts with two adjacent grains A and B with the same lattice orientation, see Fig. 2a. The 
final position of the grain boundary is obtained by the superposition of the following 
three virtual motions:  (i) an anticlockwise rotation of the grain B around [001] to obtain 
misorientation angle mψ , Fig. 2b; (ii) a clockwise rotation tψ  around the actual position 

of *
1
Bt of B to define the tilt, Fig. 2c; (iii) a rotation of the interface surface with normal nA 

from (001)A to its actual position when the angle between nA  and *BA
ng  to be  n

Bθ , Figs. 

2d, where  n
Bθ is the angle with the minimum value among these between nA and all 

lattice orientations of grain B. 
 
 Similarly, the grain boundary representation can also be obtained through fixing B 
while performing the virtual motions to the grain A, by which  n

Aθ is the angle with the 
minimum value among these between nA and all lattice’s orientations of the grain A. 
 
 

 
Fig. 2 A grain boundary with tilt angle tψ  and misorientation mψ  can be represented as 
a superposition of three virtual motions: (a) two grains with coincided crystal orientation 
initially; (b) an anticlockwise misorientation rotation mψ  of the grain B around [001]A; 

(c) a clockwise title rotation tψ  around the vector  *
1
Bt  orthogonal to [001]B; (d) a 

rotation of grain boundary surface to its actual orientation. Two Cartesian coordinate 
systems: { }*

2
*

1 ,, BA
n

BtB gtt  and { }BA
n

BB gtt ,, 21  are embedded in grain B and A, respectively. 
The [001]B is chosen to be the lattice vector with the minimum angle to the grain 



boundary normal nA. All vectors in (a)-(d) have the same unit length; however, they are 
plotted with different sizes for easy views. 
 
 

3. Electron Density-Based Expression of Order Parameter and Ginzburg-
Landau Theory 

 
 In phase field theories a challenge is to establish the quantitative relationship 
between the order parameter kη  introduced in (1-3) and the atomic-electronic structure-
based energy measurements. In this section the density-functional theory [68, 69] and 
Ginzburg-Landau’s formulation have be applied to derive a governing equation of the 
anisotropic phase-field. Introduction of Ginsburg-Landau’s theory can be found, e.g. in 
[50].  
 
3.1  Electron density and general dislocation zone 
  According to density functional theory, the physical state of a material is 
determined by the core structure of atoms and the statistic distribution of electrons’ spin 
and orbits, which can be described by the density distribution of electrons, denoted as 

( )rρ . The associated energy is the integration of ( )rρ  over the system. Therefore, this 
electron density essentially determines the order of the atomic system. For long-range 
order crystal, e.g. in an infinite large bulk crystal A, the electron density can be expressed 
by the Bloch’s theorem [70]  
 
 ( ) ( )� ⋅=
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where KA are the reciprocal-lattice basis vectors in bulk crystal; A

Ku  are the coefficients 
and r is position vector; the superscript “A” denotes the quantities associated with a grain 
A. The sum in (8) is over all KA including 0K =A . 
 

When the grain A is defined within a finite domain AΩ , this study proposes a 
Bloch’s formulation with order parameter: 
 

 (((( )))) (((( )))) (((( )))) (((( )))) (((( ))))
				
				







����

����
����







����
⋅⋅⋅⋅====⋅⋅⋅⋅==== ��������

AA K

AA
K

A

K

AA
K

A iexpuiexpu rKrrKrr 0ρηρ  AΩ∈r    (9) 

 
where 0ρ  is a constant; ( )rAη  is the order parameter associated with grain A, which 
actually is a scaling function that is constant inside the grain but varies at its boundary, 
see Fig. 3; A

Ku  are the coefficients and A
K

AA
K uu 0ρη= .  

 



 
 

Fig. 3 A bicrystal system with the order parameters Aη  and Bη  
 
 Considering the bicrystal system illustrated in Fig. 3: BAAB Ω+Ω=Ω  and 

0=Ω∩Ω BA . For simplification, it is presumed that both A and B are the same cubic 
crystals but with different orientations, corresponding to two built-in Cartesian 
coordinates { }*

2
*

1 ,, BA
n

BtB gtt  and { }BA
n

BB gtt ,, 21 , respectively, as illustrated in Fig.2. In the 
analysis thereafter a “crystal” refers a “grain” and vice versa. Similarly to (8), for the 
grain B its electron density can also be expressed as: 
 
 ( ) ( ) ( )� ⋅=

BK

BB
K

BB iu rKrr exp0ρηρ   BΩ∈r     (10) 

 
Hence, the reciprocal-lattice basis vector KA defined in grain A can be expressed as KB in 
the coordinate defined in grain B through a two-order rotation tensor ABQ : 
 



 BABA KQK ⋅=         (11) 
and 
 

 ABAB KQK ⋅=  where  ( ) BAAB QQ =−1
    (12) 

 
ABQ  is determined by the misorientation and title angles between two adjacent grains; 

which, therefore, defines the transformation between two Cartesian systems 
{ }*

2
*

1 ,, BA
n

BtB gtt  and { }BA
n

BB gtt ,, 21  in Figs. 3: 
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3.2  Free Energy and Landau-Ginsburg Expansion 
 For the bi-crystal system in Fig. 3, according to Ginsburg- Landau’s theory, the 
system free energy can be expressed in the form as [32, 37, 50]:  
 
 ...4320 +Φ+Φ+Φ+= FF        (14) 
 
where ( )TFF 00 =  is a function only depending upon temperature T; nΦ  are the functions 

of electron densities ( ) ( )rr BA ρρ , . When AΩ∈r : 
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where �

BA KK ,

means the sum of all reciprocal vectors B
J

A
I KK ,  in grains A and B; a 

restriction to (15) is that this summation has to form closed polygons, i.e 
 

( ) 0
11

=⋅+ ��
+==

n

IJ

BATB
J

I

J

A
J QKK        (16a)  

 
In this analysis, the following sufficient conditions of (16a) are applied: 
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which ensures the free energy to be invariant when r  varies inside a grain or moves from 
one grain to another, allowing the periodic Block wave function to fit the discontinuity at 
grain boundary through the order parameter η. Therefore, (15), hence (14), is in fact a 



generalized expressions of (1,3-4) including the effects of crystal structure and grain 
boundary through reciprocal vectors under the restriction (16). More detailed discussion 
about the Ginsburg- Landau’s expansion in periodic crystal can be found, e.g. in [50]. 
 
3.3  Functional Taylor’s Expansion  
 Obviously, at grain boundary the electron density (9) or (10) deviates from its 
original periodic distribution in bulk phase. The corresponding change of free energy 
should be related to the energy barrier against the atomic motion from long-ranged 
periodic distribution to “dislocated” heterogeneity zone. As suggested in [68, 69], 
functional analysis is an effective way to obtain the free energy with the best accuracy. 
By this methodology a fluctuation from a reference state of the free energy is treated as 
functional variation that has the maximum gradient along the direction normal to grain 
boundary. The stationary solution provides the conditions to determine the coefficients in 
(15). Analogy to the analysis in [35, 36], the functional Taylor’s expansion of (14) over a 
domain Ω  is 
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where ( )rρ  can be either ( )rAρ  or ( )rBρ  or both of them. The functional variation of 
( )rρ  in (9) or (10) can be expressed as a fluctuation from a reference state characterized 

by ( )r0
~η : 
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which means, as presumed, at grain boundary the Bloch’s wave is scaled by order 
parameter ( )rη .   
 

By choosing the reference state ( )r0
~η  in (20) be the “zero” state, i.e. ( ) 0~

0 =rη , 
and omitting the terms with the order of K higher than 4 in (17), after tedious derivation it 
can be proven that the secondary variation, i.e. (19), can be expressed as [32, 35, 37]:  
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where “ ∇ ” is the gradient operator and the structure factor “ ( )KS ”, following the 
terminology in fluid dynamics, is defined by 
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So [ ]KĈ , the fourier transformation of the “direct correlation function” (((( ))))';C rr −−−−0ρ  [35, 
36], is the only term to be determined. A brief introduction of the derivation of (21) is 
given by Appendix I.  
 
 By analogy with the theory of plasticity, in (19) the functional variation of the 
electron density plays the similar role as strain whereas the secondary functional variation 
in (19), or, alternatively, the “direct correlation function” (((( ))))';C rr −−−−0ρ  with the fourier 
transformation in (21) and (22), is somewhat like a material’s stiffness matrix. This 
analogy will be discussed further in next subsection. 
 
 On other hand, the first order variational (18) can be expressed as: 
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Applying (16) and dropping the terms with the order of K higher than four: 
 
 421 42 ΦΦ∆ ++++≈≈≈≈F         (23a) 
 
 
3.4  Structure Factor and Direct Correlation Function 
 In fluid dynamic analysis [34-36] the direct correlation function (((( ))))';C rr −−−−0ρ  is 
originally employed to establish the connection between particles based on their positions 
and the bonding energy in-between, representing “stiffness” against motions of particles 
in the system. Thus, an approximation has been made in this study is that, in the area near 
or on the interface surface between two grains, ( )KĈ  can be expressed as a 
dimensionless Peierls’ potential in the form of  Bloch’s wave function as below [64] 
 

  ( ) [ ]{ }KK bii
h
h

C
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where b is Burger’s vector; ph  and 0h  are the amplitude of the Peierls’ energy barrier 

and its mean value, respectively; both ph  and 0h  are defined as the energy per unit area; 
Re(f) denotes the real part of the function f inside the blanket. For simplification one may 
take, e.g.: 
 

 
20

ph
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In (24) ( )KĈ  is the fourier transformation of (((( ))))';C rr −−−−0ρ  whereas K is the reciprocal 
vector corresponding to r. In cubic crystals there is no essential difference between 
coordinates and reciprocal coordinates. The second term of (24) has the same structure as 
its two-order derivatives (or integrals), which actually is the stiffness against edge-like 
dislocation. The first term of (24), in conjunction with the constant term in the blanket on 
the right hand of (22), represents the “stiffness” relevant to the change of “dilatation” 
energy.  
 

By substituting (24) into (22) and (21), applying (16) and omitting the terms with 
the power higher than the fourth orders of K; then applying (13), the resulted equation, 
together with (23a), leads to: 
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where Λ

αK
u  are the coefficients in (9) or (10) whereas the superscript Λ (=A,B) indicates 

the grain. The first two rows of (25) are corresponding to the terms in (23a) and the third 
row to (21); in the latter, after applying (24), the coefficients αβa , αβb  yield: 
 

 ( ) ( )βααβ ππ KbKb
h
h

a
p

2sin2sin1 0 −−=         

 ( ) ( )βααβ πππ KbKbbb 2cos2cos2 22=  

An
K
K

K
K

⋅=
∇
∇⋅=

Λ

Λ

Λ

Λ

Λ

Λ
Λ

α

α

α

α
α η

ηθcos , 
An

K

K
⋅=

Λ

Λ
Λ

β

β
βθcos  

 
Notice that Λη∇∇∇∇  is parallels to Λn  and  
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In cubic system 



 
 θ∇=∇ Λn          (26) 
 
where θ  is the angle between An  and a reference direction, e.g, one specified lattice 
direction, so it can be the tilt angle. Hence, the term ηη∇∇  in (25) represents the effect of 
variation in tilt angle, in other word, the change of grain boundary curvature. By 
substituting (26) into (25), one can find that the latter has the similar expression as the 
free energy (3) obtained in [10, 11, 59] but with 0====ε . We will discuss this point again in 
next section. 
 
 Also, the grain boundary (surface) energy per unit area A can be calculated 
approximately by applying of (25): 

 
  

2
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w

B dF
Tk

A
F rη
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where the one-dimensional integration dr is along the direction perpendicular to grain 
boundary over the length scale “w” that represents the thickness of surface layer.  
 
  
3.5 Short Range Interaction  

Since in this study a grain boundary is viewed as a disordered generalized 
dislocation zone between two long-range ordered atoms arrays, the short-ranged atomic 
interaction may dominate its diffusion and mechanical behavior. Hence, in the expansion 
(25) the part constructed by the reciprocal vectors that span primitive cell (the first 
Brillouin zone) may provide satisfactory precision for computing the fluctuation of the 
free energy. This postulation is termed the “approximation of short-range interaction” in 
this paper. On other hand, by performing a rotate or a translate operation to the 
Cartesian’s coordinate in a crystal, i.e. choosing βα KK ,  from different coordinates, the 
free energy (15) and its fluctuation (25) must be invariant, which leads to the 
normalization principle suggested by Karma et al. (Ref.[31] in [13], also see [32]): 
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whereby an natural choice is to let each coefficients on the right hand side of (28a,b)  
proportional to the projection of the corresponding reciprocal vector onto the outer 



normal vector of grain boundary surface. This is because the functional Taylor’s 
expansion (17) describes the fluctuation of free energy; the gradient of this fluctuation is 
the outer normal vector that defines a grain boundary.   

 
As examples, the BCC and FCC crystals, respectively, are picked to compute the 

coefficients in the proposed free energy formulation.    
 

 
3.5.1 BCC Crystal 
 For BCC crystal, the reciprocal vectors corresponding to the lattice vectors that 
span its primitive cell form a FCC crystal cell. They belong to the group of vectors 
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 For example, considering the coefficients related to the grain A in Fig. 4, where 
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cba ,,θ  is the angle between the outer normal vector An  of the grain boundary and 

[ ]cba ,,  direction of the crystal A; then the coefficients in (25) or (28a) yield 
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3.5.2 FCC Crystal 
 For FCC crystal, the reciprocal vectors from the vectors that span its primitive cell 

form a BCC structure; which is a group of vector 
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pairs satisfy (16): 
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4. Coefficients in Phase Field Model and Atomistic Computation 
4.1 Surface Energy and Stacking Fault Energy 
 After applying (29-31) there are still two undetermined coefficients in (25): the 
reference density coefficient 0ρ  and an implicit length scale “w” that characterizes the 
thickness of interface surface layer between grains B and A. The latter determines the 
amplitude of the gradient η∇  on a boundary. These two coefficients can be calibrated if 
the amplitude of interface surface energy (27) is known for at least two cases in a one 
specie polycrystalline system.  
 
 The first case is that grain A and B have the same orientation but with misfit in 
atomic positions. The corresponding grain boundary is created by a shift of grain B in a 
direction tangential to the grain boundary surface, which can be considered as a stacking 
fault (incomplete edge dislocation) with the corresponding locally stored dislocation 
energy less or equal Peierls’ energy barrier. When such a shift occurs over multiple 
atomic layers, according to (24) the upper bound of the accumulated energy per unit 
surface area is: 
 
 02 hnn sPs =γ          (32) 
 
where Pγ  is the Peierls’ energy barrier with the dimension of energy per unit area and sn  
is the number of piled atomic layers with the stacking faults. The second case is that grain 
B vanishes, which can be considered as the extreme case that the grain boundary is 
formed by vacant sites with very large widthness, so such a grain boundary is identical to 
the free surface of grain A to vacuum with a surface energy Sγ . Once Sγ  and Pγ are 
known, 0ρ  and “w” are fixed. 
 



 Many sophisticated considerations that bridge phase field model and atomistic 
computation can be found, e.g. [27, 32, 70-73]. This study suggests using the density 
function theory-based quantum computation [70, 72, 74] to compute Sγ  and Pγ . Fig. 4a 
explains the process to compute Sγ : which is the difference in total energy between two 
states of the system: the equilibrium positions and that separated into two half of atomic 
slabs. This is because the work required to split the atomic supercell is the coherent 
energy cohE  that is transformed into the energy to form two new surfaces, i.e. 
 
 S

cohE γ2=           (33) 
 
 Figs. 4b,c show such a half atomic cell splitted along [[[[ ]]]]001 direction and the 
corresponding electron charge density ( )rρ  on (((( ))))110  plane. Fig. 5 is the supercell to 
compute the slipping-induced dislocation along [ ]111  direction and the corresponding 
energy barrier. Examples of BCC iron and FCC Aluminum crystal are computed and the 
results are listed in table I. 

Table I 
 Fe(bcc) J/M2 Al(fcc) J/M2 

[ ] [ ] ≈		



�
�
�



�
=

2
001 001

coh

S

E
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2.715 0.93 

≈Pγ  0.49 0.17 
 
 

 
Fig.4 Computation of surface energy and charge density distribution  

near (((( ))))001  free-surface of BCC iron 
 



 
Fig. 5 Supercell used for computing Peierls’ energy barrier in BCC crystal 

 
 By substituting obtained Sγ  and Pγ into (27) and expanding Λη  into Fourier series 
across the thickness of grain boundary layer w, under certain approximations the 
following relations are finally reached: 
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γ
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where b is Burger’s vector; k, k0 are constants and k is about unit. It should be noticed 
that according to Fig. 3c the grain boundary width “w” in (34) is the interval where the 
order parameter 10 <<η . It is much greater than the visible “grain boundary”, denoted 
as ow , which represents the significant disorder of atomic positions. Usually,  

wwo 5.03.0 −≈ . 
 

The derivation of (34) and detailed expressions of the constants are given by 
Appendix II.  
 
 
5. Computer Implementation and Numerical Results 
 For single specie cubic polycrystalline system, by substituting (34) into (25) the 
latter becomes: 
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p

I b
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a Kπ2sin1 20 −−=       defined by (24) 

 ( )II bb Kπ2cos2=  
 
where b is Burger’s vector; Fκ  is a constant coefficient; 0h  and ph  are average Peierls’ 

energy and height of the energy barrier, respectively; so Pph γ= ; Λ
Iθ  is the angles 

between surface normal Λn  and reciprocal vector Λ
IK  in grain � ; in cubic system Λ

IK  

coincides one of crystal orientations of the grain. Thus, the functions ( )Ib Kπ2sin , 

( )Ib Kπ2cos , and angles Λ
Iθ  essentially represent the effects of grain boundary 

misorientation and tilt in phase field evolution. 
 
 Based on the analysis of [4, 7, 59] in the numerical simulation performed in this 
research the Ginzburg-Landau’s kinetic has been applied: 
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where the subtraction of the second term on the right hand side ensures the evolution law 
(36) is within the framework of generalized diffusion equation, like, e.g. (2).   
 
 Following the idea developed in [59], the Ginzburg-Landau’s kinetic for the 
evolution of surface angler is given by  
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where �'  denotes the grain �'  adjacent to grain � ; the norm of a second order tensor  A 

is expressed as  2
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2
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5.1 Anisotropic Case: Comparison with WKC Model  
 By comparing (40) with (3), the WKC model[10, 11, 59], one can find that (35) 
and (3) will coincide each other when the following relations hold: 
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The term in the second relation of (38c) is introduced in [10, 11, 59] for the rotation 
between misfitted grains, which is taken care by kinetic relation (37) in this study. 
 
5.2 Isotropic Case 
 Under this condition: 1cos =Λ

Iθ  and ΛΛ = JI uu 22  for any pair of { }JI ,  in (35). Then 
by comparing (40) with (4), one can find that the following relations hold: 
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However, the term ΛΛΛ ∇∇ Iθηη  in (35) has no its counterpart in (4). Λ∇ Iθ  is 

proportional to the inverse of grain boundary curvature and it usually is a higher order 
small quantity as compared with other terms. 
 
  
5.3 Numerical Results 
 The Ginzburg-Landau expression of free energy (35) and the phase field kinetics 
(36, 37) have been implemented into a finite difference computer code. The experimental 
result of Naval Research Laboratory [75] provides a set of discretized data of a single 
specie polycrystalline system, which has been used as the initial condition for the grain 
coarsening simulation.    
 
 We first consider isotropic case, investigating the relationship between grain 
boundary thickness and the coefficients in the free energy (35). Fig. 6a shows examples 
of a single specie system by which a square grain contains a circle grain with two 
different pre-assigned grain boundary thicknesses (w). The square is discretized by 
269x269 interpolating points with a uniform spacing “h” in-between. The model on left 
has the initial hw 15=  whereas on the one on right the initial hw 4= . Plotted in Fig. 6b 
are the evolutions of the boundary thicknesses, i.e. “w”, for four different pre-assigned 
initial values with pre-assigned 1=Fκ  and 2=Sκ . As demonstrated by the figure, 
regardless initial value “w” approaches to the same value within the first 10 time 
increments for all four cases; which proves that the phase field formulation leads to stable 
grain boundary thickness during coarsening when its coefficients are fixed. In the 
computations demonstrated in this paper, the thickness “w” is defined as the width of the 



strip within which the production of the order parameters Aη  and Bη  from two adjacent 
grains is less than 0.9, see Fig. 3c. 
 

According to (35a) and (34): 
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On other hand, in (35) the product FSκκ  scales the gradient term ( ),..., 2ηη ∇∇Γ . The 
second equality in the first relation of (40) indicates that this product coincides to the 
energy dissipation when a dislocation passes a distance “ wwk ”. Hence, it can be 
anticipated that this product essentially controls the grain boundary thickness in the phase 
field model. In order to verify this prediction, plotted in Fig. 7a are the four computations 
of the two-grain system in Fig. 6 with the same initial thickness and fixed coefficients: 

1=⋅ bP kγ , 3=
S

P

γ
γ

; but varying b = 0.5, 0.7, 1., 1.4. Different grain boundary thickness, 

“w”, have been obtained after tens time steps.  On contrast, Plotted in Fig. 7b are the 
results from the same examples in Fig. 7a but the computed grain boundary thickness has 
been normalized by the product of FSκκ . As expected, they approach to the same value. 
 

 
   (a)      (b) 
Fig. 6 Bi-grain system for numerical test: (a) two assigned initial grain boundary 
thickness Nhw =  for 15=N  and 4=N , respectively; (b) changes of grain boundary 
thickness when time step increases; the four computations with different initial 
thicknesses converge into the same value. In these computations: 1=Fκ  and 2=Sκ  are 
taken. 
 



   
(a) (b) 

Fig. 7 The relationship between the coefficients Fκ , Sκ  and the computed grain 
boundary thickness Nhw = ; where Fκ  scales the amplitude of free energy in grain and 

the product Sκ Fκ  scales the energy associated with the gradient of order parameter. 
 
 Multiple two-dimensional computations of polycrystalline system have been 
carried out for three cases: (i) isotropic grains; (ii) two-dimensional grains with titled 
orientation; (iii) a two dimensional slice of three-dimensional grains with grain boundary 
title and misorientation. The results are plotted in Fig. 8. For the anisotropic cases the 
initial orientation of grains is assigned according the experimental results performed in 
Naval Research Laboratory[75], so in these figures the colors represent the angle between 
the y coordinate and [ ]010  direction for (ii) and (iii).  These results demonstrate that the 
crystal anisotropy does bring up differences. A remarkable trend is that in the isotropic 
system (i) the grain growth is relatively “homogenous”, since after a while of coarsening 
some small grains are still there whereas they disappear in other two cases. Also, in 
anisotropic system it seems that the propagation of low angle grain boundaries ( the 
border between adjacent grains with similar colors) is faster than that of the high angle 
grain boundaries ( the border between adjacent grains with higher contrast in colors); 
which results in larger individual grains. This could be a reason for the abnormal grains 
in experimental observations. The three dimensional computation in Fig. 9 is based on 
the initial condition of NRL experiment[75]. The example in Fig. 10 is computed by a 
random pre-assigned initial condition, which provides the view of the coarsening inside 
the polycrystalline. 
 



 
Fig. 8 Comparison of phase-field simulation based on (40) for (i) isotropic grains; (ii) 
grains with titled angles in 2D plane; (iii) a 2D slice of 3D grains with grain boundary 

title and misorientation. These results show a trend that isotropic approximation leads to 
relatively “homogenously” grain growth whereas abnormal-sized grains appear in 

anisotropic cases. 
 

    
  (a) time step = 100   (b) time step = 80000 
Fig. 9 An example of 3D phase field simulation at two time steps; the NRL experimental 

result[75] is used to give initial grain sizes and distribution. 
 



       
 (a) initial   (b) 15000 steps  (c) 30000 steps 
Fig. 10 Another 3D example with randomly initial condition; the polycrystalline slab is 
sliced into 5 sections to view inside the slab; the “thick” grain boundaries are those 
interface surfaces which are almost parallel to section.   
 
6. Conclusions 

A challenge in phase field modeling of grain coarsening is to establish the 
quantitative relationship between mathematic expression of free energy field and the 
complexities caused by grain boundary geometry, crystallography and the criteria to 
define associated energy measurements. In this study a “generalized dislocations zone” is 
proposed to model grain boundary while phase field order parameter is assigned as a 
scaling factor of electron gas density distributions in crystals. The difference in 
orientations between the two adjacent grains is considered in general as a superposition 
of a clockwise misorientation rotation, an anticlockwise title rotation, and a rotation of 
grain boundary surface. Ginzburg-Landau expansion has been applied to describe free 
energy and it fluctuation at grain boundary; in which the Peierls-Nabbaro’s dislocation 
potential defines a “direct structure factor” that characterizes the order of atoms position 
in solid crystals. For coarsening process, this structure factor essentially governs the 
stiffness of grain boundary. Therefore, in the proposed phase field model of anisotropic 
grain coarsening, all coefficients in the free energy formulation can be determined 
through crystallography analysis and Ab Initio quantum mechanical computation or 
molecular dynamic simulation. In the proposed phase model the coefficients are fixed 
according to the amplitudes of stacking fault energy Pγ  and surface energy Sγ  

 
Analysis of BCC iron and FCC aluminum have been conducted, indicates the 

“theoretical” grain boundary thickness w to be approximately proportional to the product 
of Burger’s vector “b” and the ratio PS γγ2 . The product PSb γγ2 is the scaling 
parameter to the gradient part in the proposed phase field free energy. This “theoretical” 
thickness represents the interval where the order parameter neither vanishes nor be unit; 
hence it is usually about two to three time greater than visible grain boundaries thickness. 
The obtained conclusions have been verified by the numerical computations for a 
bicrystal system with different Burger’s vector. The performed two- and three-
dimensional polycrystalline computations demonstrate the proposed anisotripic 
formulation is applicable for large scale simulation.  The developed phase field model 
can be considered as an extent of the combination of the achievements reported in [1-15]. 
 
 



Appendix I: Derivation of (21,22) 
The relation (19), i.e. the secondary variation of (17), can be expressed as 

Ornstein-Zernike relation ( see [36], eq.66): 
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where ( )xx ~;0 −ρC  is a direct correlation function to be determined, corresponding to an 
interface surface with an outer normal n; 0ρ  is a constant coefficient in (10,11). The first 
term on the right hand of (a1) is relevant to the dilatation stiffness whereas the second 
term is correlated to shear modules. According to [32, 36], when 
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can be expanded into Taylor’s series in the power of 2K : 
 

 
[ ] [ ] [ ] [ ]

...        

...ˆˆˆˆ
4

4
2

20

4
4

2
20

+++=

+++=

KK

KKKKKK

ααα
CCCC

     (a3) 

 
Hence 

 
[ ]

...122
ˆ

2
422

2

++=
∂

∂ K
K

K ααC
       (a4) 

 
so (a2) can be rewritten in the form as 
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On other hand, by substituting (a1) into (19): 
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The coordinate r and r̂ can be related each other by  ( )rr f=ˆ  where ( )rf  is an arbitrary 
one to one mapping, e.g. ( ) rr −=f . According to the derivation presented in [36]*, by 
applying Fourier transformation “ ℑ ” to (a6) with convolution, it becomes:   
 

  [[[[ ]]]] (((( ))))[[[[ ]]]] (((( )))) (((( ))))�������� −−−−====ℑℑℑℑ
KK

KKKr
~

,

B ~ˆˆĈ~d
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where the upper hat denotes Fourier transformation and ( )KK f=~ .  
 

For an arbitrary square-integrable function ( )r~q  in real space ℜ and ( )r~q  is with 

NC  continuity where 2≥N , e.g., (((( )))) (((( )))) (((( ))))(((( ))))r~fr~r~q δρδρ==== , the following relations hold: 
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On other hand, when ( ) 0~

0 =rη in (20) and ( ) rrr −== f~ , ( )KK f=~ , one has 
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By substituting (a3) into (a7), performing inverse Fourier transformation and applying 
(a8-a11), after omitting the terms with the order of K higher than two the (a6) can be 
written in general: 
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where the relation (16), hence ( ) ( )rr

KK ~
~ ηη = , have been applied. 

 
The (a12) can be rewritten in the following alternated expression: 

  

                                                 
* See page. 159 in [36], equation (67)  and following analysis 
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where the structure factor ( )KS  is defined by 
 

 ( ) [ ][ ] 1

0
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−= KK CS         (22) 

  
 
 
 
Appendix II  
 Noticing that the gradient Λ∇η  is perpendicular to grain boundary so ΛΛ ∇=∇ ηη n  

where n is grain boundary normal. As illustrated in Fig. 3c, Λη  varies from 1 to 0 which 
defines a grain boundary, so one may define a coordinate r varies from 0 to w to cross 
over the boundary layer accordingly. Then, Λη  can be expanded into Fourier series across 
the thickness of grain boundary layer: 
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with 
 ( ) 10 =Aη , ( ) 0=wAη , ( ) 00 =Bη , ( ) 1=wBη  
 
Substituting (b1) into (27), then applying the condition (32) one obtains: 
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  When the grain boundary outer normal n coincides [[[[ ]]]]001  and (24a) applies: 
 
 bkw s====          (b3) 
 1====Λθ Icos          (b4) 
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In (b3) b is Burger vector and ks is a constant. Substituting (b3,b4,b5) into (b2) and 
performing the integral over the interval [ ]w,0 , we finally obtain: 
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where 
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Hence 
 
 

0
0 TkbkB
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The second case is free surface. Under this condition the grain B vanishes and the 

left hand side of (34) becomes Sγ . Assuming that the thickness w is the same as that in 
(b8): 
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where 
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Omitting tedious calculation, we finally obtain  
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For the grain boundaries with the heterogeneities illustrated in Fig. 2, by applying 
(5a-5d) and (32a) an alternative form of (39) is 
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So all coefficients of (25) are fixed and the scaling function Λη , i.e. the order parameter, 
is to be determined by phase field solution.    
 

By omitting the terms for 2≥n  in (b1), the coefficient on the right hand side of 
(b12) becomes 
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Substituting this relation into the first equality of (b12), one finds: 
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Substituting (b13) into (35a), one obtains the alternative expressions of the 

coefficients as following 
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and 
  
 ( )wPFS wkγκκ =   or  ( )bPFS kb γκκ =   (b15) 
  
where 
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