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Rolling Contact Between Rigid
Cylinder and Semi-Infinite Elastic
Body With Sliding and Adhesion
Based on a hybrid superposition of an indentation contact and a rolling contact an
analytical procedure is developed to evaluate the effects of surface adhesion during
steady-state rolling contact, whereby two analytic solutions have been obtained. The first
solution is a Hertz-type rolling contact between a rigid cylinder and a plane strain
semi-infinite elastic substrate with finite adhesion, which is a JKR-type rolling contact but
without singular adhesive traction at the edges of the contact zone. The second solution
is of a rolling contact with JKR singular adhesive traction. The theoretical solution
indicates that, when surface adhesion exists, the friction resistance can be significant
provided the external normal force is small. In addition to the conventional friction
coefficient, the ratio between friction resistance force and normal force, this paper sug-
gests an “adhesion friction coefficient” which is defined as the ratio between friction
resistance force and the sum of the normal force and a function of maximum adhesive
traction per unit area, elastic constant of the substrate, and contact area that is charac-
terized by the curvature of the roller surface. �DOI: 10.1115/1.2736431�

Keywords: rolling-contact, friction coefficient, adhesion, contact mechanics
Introduction
Contact friction is an issue in almost all fields in engineering

cience �see, e.g. �1–4��. The problems of rolling-contact with
dhesion at small scales recently became a subject with increasing
nterest in the research and application of micronanotribology
5–9�. A remaining challenge among others is to obtain predictive
heoretical solutions for quantitatively specifying the effects of
dhesion during rolling contact. Most existing analyses, e.g.
10,11�, emphasize sliding and tangential friction while expression
f the normal stress from the static problem is borrowed to obtain
emianalytical solutions. The deviation from the exact solution is
ot easy to identify, especially with adhesion present.

Based on the analytical methodologies of Muskhelishvili �12�
nd Johnson �3�, in conjunction with the solution strategies of
chenbach et al. �13� for the shear Dugdule crack �14� and
augis �4� for indent contact with adhesion, this paper introduces
procedure to obtain an exact solution of the steady-state rolling

ontact with adhesion and/or sliding, using a hybrid superposition.
The history of contact mechanics and its state-of-the-art have

een carefully reviewed, e.g., in �3,4�. Hertz �1� first derived the
elationships among normal pressure, contact area, and contact-
nduced penetration depth for frictionless contact between two
lastic ellipsoids, omitting the effects of adhesion. The Johnson-
endall-Roberts �JKR� theory �15� first reveals the effect of ad-
esion analytically for Hertz contact. For hard materials, the
erjaguin-Muller-Toporov �DMT� model �16� incorporates adhe-

ion force as a function of the separation between contact sur-
aces. However, in this theory the additional deformation caused
y the noncontact adhesion is ignored; instead, the deformation
eld from the Hertz solution is adapted. Hughes and White �17�
eneralized the framework to describe separation-dependent adhe-
ion between elastic bodies, which includes both “soft contact
odel” �JKR theory� and “hard contact” �DMT theory�. Using the
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Muskhelishvili-Dugdale model �12,14� of fracture mechanics,
Maugis �4� found a closed form solution of the static contact
between a semi-infinite plane and a punch with elliptic profile
associated with adhesion. The Maugis model has been extended to
the cases of cylinder/cylinder and cylinder/plate contact by Bar-
quins �18� and Baney et al. �19�, respectively. Sari and co-authors
�8� have studied various cases of rolling contact with adhesion by
superposition of fracture mechanics solutions and contact solu-
tion, neglecting the effects of coupling between normal/shear
stress and tangential/normal dislplacement. On other hand, the
analytical solution of static contact with adhesion �20� indicates
that the effects of normal loading-induced substrate stretch can be
significant. For rough, frictional contact, Spence �21� introduced
the concept of self-similar contact �SSC�, extending the Hertz
problem. The two-dimensional frictional punch on a semi-infinite
elastic plane with shallow crack has been studied by Hasebe
�22,23�. A self-similar frictional contact solution for a nano-
indentation has been obtained recently �24,25� based on the meth-
odology of Mossakovskii �26� and others. Further discussions
about adhesion-contact and its application can be found, e.g., in
�10,20,27–30�.

For engineering application, an issue in contact problems with
adhesion can concern the definition of resistance to motion. Con-
ventionally the friction coefficient � is defined as the ratio of the
friction resistance force parallel to the rolling or sliding direction
and the external normal force. When adhesion is present, the re-
sistance to motion can be significant even without externally im-
posed pressure �4,27�. An effort is made to clarify this issue based
on the obtained solution.

2 Models and Governing Equations

2.1 About Rolling Contact. A rolling contact is somewhat
more complicated than static or quasistatic contact. Consider a
roller rolling on a surface � with an angular velocity � while a
force P normal to �, a force Q tangential to �, and a moment
Mappl, are applied on the central axial line of the roller, see Fig. 1;
also an additional moment MP is applied on the central axis,
which is the toque induced by normal load P, since the system is

not symmetric �Fig. 1�. By varying the magnitudes and directions
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f Mappl and Q, one obtains different cases of rolling contact that
an be classified into three categories: �1� free rolling: Mappl=0,
=0; �2� scratching: Mappl+MP+RQ=0, and �=0; �3� 0
�Mappl�+ �RQ� and ��0, which is termed “constraint rolling” in

his paper.
Let R�=V for constraint rolling, while the roller, Fig. 1, is an

nfinitely long cylinder. The problem is then a plane strain contact
etween a rolling cylinder with radius R and a semi-infinite elastic
ubstrate. Here, the cylinder is under normal pressure P and lat-
ral force Q per unit thickness along the direction perpendicular to
he plane. The adhesion is taken to occur both inside of the contact
one �zone I� and outside of the contact zone �zone II�.

2.2 About Adhesion During Contact. The physics of “fric-
ion” or “contact” always relates to the length scale considered.
igure 2�a� illustrates a hierarchical structure of a contact prob-

em; a macroscopic contact between two surfaces is actually the
dhesion and friction between asperities on the surfaces at micros-
ales. At the atomic scale, a contact is essentially a discontinuity
etween two periodic atoms arrays and the contact between two
toms means that �N, the normal distance between centers of the
toms, deviates from �N

atom, an equilibrium distance without inter-
cting force. �N

atom is usually on the same order as the lattice
onstant. When �N��N

atom, the interatomic force is repulsive, oth-
rwise it is attractive. Hence, a tribological “contact” occurs when
he normal distance �N between two contact surfaces is equal or
ess than a character distance �N

0 , where the “surface” is defined as
he centers of the atoms that form the surface layer of a solid body
nd the character distance �N

0 can be, e.g., the distance between
he surfaces within which an attractive interaction exists, where
he definition of �N

0 specifies a “contact.” When �N
0 is, e.g., the

tomic equilibrium distance �N
atom, then in the corresponding “con-

act zone” there will be only repulsive traction or no traction.
lternatively, when the distance �N

0 is defined to be equal to a
cutoff” distance �N

cutoff, beyond which adhesion may be ignored
see Fig. 2�b��, then adhesive traction takes place only within the
ontact zone, as described by the JKR model �15�. Under this
ituation, the noncontact adhesion zone II illustrated in Fig. 1
anishes. Usually �N

cutoff is of the order of 10−1–101 nm.

ig. 1 A rolling contact system with a normal force P, a tan-
ential force Q, and a moment Mappl applied on the central axial

ine of the roller, where P induces additional moment MP since
he system is not symmetric. By varying the magnitudes and
irections of P, Q, and Mappl, one obtains different cases of
olling contacts that can be classified into three categories: „1…
ree rolling:Mappl=0,Q=0; „2… scratching: Mappl+MP+RQ=0 and
=0; „3… �Å0 and 0< ˆ�RQ�+ �Mappl�‰, which is termed “con-

traint rolling” in this paper.
In general, a surface adhesion can be expressed in the form as
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T = ��1��N� � T0 0 � �N � �N
0

�2��N� �N
0 � �N � �N

cutoff

0 �N � �N
cutoff � �1�

where �1��N� and �2��N�, respectively, are functions of �N, the
normal distance between the surface pair; �N

cutoff is a “cutoff” dis-
tance, beyond which adhesion becomes ignorable. In �1� the first
line defines “contact,” which states that within a contact zone �0
��N��N

0 � the traction between two contact surfaces can be either
compressive or attractive with the amplitude less than T0. The
combination of �1��N� and �2��N� defines a traction-separation
law which is similar to the interfacial cohesive law introduced by
Needleman �31�, which can be, e.g., a linear relation characterized
by the maximum adhesion T0 and the rate of decay T1,

���N� = T0 − T1�N for 0 � �N �
T0

T1
�2�

or the derivative of the Lennard-Jones-type potential,

���N� =
d	LJ

d�N
and 	LJ = 
0�	�0

�N

n1

− 	�0

�N

n2� for 0 � �N � �

�3�

in �1�–�3� �0, 
0, �N
0 , �N

cutoff, T0, and T1 are materials constants.
For the potential in �3�, �N

cutoff⇒� and n1, n2 are determined
through the Hamaker integral over the interatomic potential
�32,4�.

In general, the maximum adhesion T0 can be expressed in the
form of T0=k
S /�N

atom, where �N
atom is the atomic equilibrium dis-

tance and k is a coefficient with values from 4 to 10 �see Sec.
1.2.4 of �4��.

2.3 Self-Similarity [21]. The steady-state rolling contact to
be studied is also assumed to possess dual self-similarities. First,
when the roller rolls with constant speed, at different time in-
stances the deformation solution fields are identical if these solu-
tions are defined in the coordinate system attached to the roller.
Second, at a given time instance, varying normal pressure leads to
a series of self-similar solutions, analogous to the solution ob-
tained by Spence �21� for the Hertz contact problem under pro-
gressive loading. For that case the self-similarity refers to the
dimensionless field solutions of ui / l and �ij /G, which are the
functions of dimensionless coordinates Xi / l only; here l is the
half-length of a contact zone, Xi is the coordinate originated at the
bottom of the indent.

2.4 JKR, DMT, and Other Models of Adhesive Contact.
The JKR model �15� is the first mathematically complete contact
solution with adhesion and is also referred to as a “soft model” of
adhesion contact �4,17�. In this case, when deformation caused by
a contact is not ignorable either inside or outside of a contact
zone, the corresponding contact zone size will be relatively large
and the amplitude of �N

cutoff in �1� will be relatively small since the
latter is a material constant. One can assume that �N

cutoff=�N
0 in �1�

and the ratio between �N
0 and contact zone size is infinitesimal.

Under this situation, the adhesion outside the contact zone is also
infinitesimal and a high amplitude of adhesion is required to main-
tain two contact surfaces sticking together near the two ends in-
side the contact zone. Such a high adhesive traction is described
mathematically as an additional singular term to the Hertz solu-
tion in �15�, which is similar to the stress intensity factor solution
for the mode I Griffith crack tip in linear elastic fracture mechan-
ics. On other hand, the DMT model �16� accounts for the adhesion
outside of contact zones but adopts Hertz’s deformation solution,
which implies that the adhesive traction has no effect on the de-
formation of the contact surface. Thus, this theory is termed “hard
model.”
The intellectual merit of JKR theory lies in the introduction of

Transactions of the ASME

E license or copyright, see http://www.asme.org/terms/Terms_Use.cfm



a
s
t
z
c
c
z
s
z
w
s
t
D
e
J
F

�
a
r
d
c
p
r
d
s
v
c
p
M

J

Downloa
dhesion to contact and to reveal the similarity between the adhe-
ive contact solution and crack tip singular solution. According to
he solution procedure of a penny-shaped crack with a strip yield
one ahead of the crack tip in the small scale yield fracture me-
hanics, Maugis obtained the complete analytical solution of the
ontact between two elastic spheres with an additional noncontact
one enhanced with constant adhesion �0 �4�, which removes the
ingular adhesion in JKR theory. When the noncontact adhesion
one becomes infinite and �0 vanishes, this solution coincides
ith Hertz’s solution without adhesion. It degenerates to the JKR

olution provided the noncontact adhesion zone vanishes. When
he deformation field approaches Hertz’s solution, it describes the
MT model with constant adhesion �0. Hence, Maugis’ solution

ssentially establishes the connections among Hertz’s solution,
KR theory, and DMT model for static contact, as illustrated in
ig. 3�a�.
Although semianalytical solutions of rolling contact, e.g.,

10,11�, were developed more than a half century ago, it remains
challenge to quantitatively describe the effects of adhesion on

olling/sliding contact accurately. Following the scheme intro-
uced in �4�, Baney and Hui �19� obtained a solution of the static
ontact between cylinders with DMT adhesion. Barquins pro-
osed the procedure using fracture mechanics solutions to study
olling contact with adhesion �18�. This concept has been further
eveloped by Sari and co-workers �8�. In �8� the Carter’s rolling/
liding contact problem has been analyzed by the superposition of
arious crack tip solutions and a contact solution neglecting the
oupling between normal/shear stress and tangential/normal dis-
lacement. The obtained results agree with static JKR and

Fig. 2 „a… Hierarchical structure of a t
contact/sliding between an iron subs
the details of this analysis can be foun
between adhesion energy, surface ene
adhesion
augis’ solutions in general. However, as indicated by Sec. 8 of

ournal of Tribology
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�3�, the effect of Possion’s ratio is significant for nonadhesion
rolling/sliding. Hence, the effect of couplings between normal and
transverse field variables can be remarkable for some adhesive
rolling contacts, e.g., for the cases at the micron scale as illus-
trated on the left end of Fig. 2�a� or the cases at the nanometer
scale where the short-ranged chemical bonding force dominates.

2.5 Proposed Model. In contrast to static problems, in a roll-
ing adhesive contact the system is no longer symmetric; so the
corresponding distribution of adhesion and sliding can be quite
different from these in static solutions. These distributions, in con-
junction with material constants that include the maximum adhe-
sion, Young’s modulus, and Poisson’s ratio, essentially determine
the mesoscopic behaviors of the rolling/sliding contact system.

This paper develops a model to obtain an analytical solution of
the steady-state rolling contact; the mathematical singular adhe-
sive tractions at the edges of the contact zone are removed. In-
stead, the traction-separation law defined by �1� is applied. As
illustrated in Fig. 3�b�, the idea of the proposed solution procedure
is inspired by Maugis’ static adhesive contact solution and Achen-
bach et al.’s adhesive shear crack model �13�. The obtained solu-
tion degenerates to a rolling contact solution with JKR adhesion
when the singular term is taken into account.

In the contact system of Fig. 1, the following approximations
are adapted in the analysis of this study:

�a� Rigid cylinder roller, linear elastic substrate;
�b� The roller rotates clockwise with a constant angular ve-

logical process, the right most is the
e and a TiN particle at „001… surface,
n the Sec. 4.1 of †32‡; „b… relationship
, and the definition of �N

0 for JKR-type
ribo
trat
d i
rgy
locity � while the substrate advances horizontally from
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right to left with a constant speed V; the case of R�=V is
taken into account first;

�c� Infinitesimal strain;
�d� The effects of inertia and weight are omitted;
�e� The traction-separation relation �1�, i.e., T=T��N�

�17,31�, is applied. Furthermore, we first consider the
JKR theory without singular adhesion, so

�N
cutoff = �N

0 �N
0

l
→ 0

where l is the half-size of the contact zone; therefore the
following simplification is taken:

�N
0 = 0 �4�

Fig. 3 „a… Models of adhesion conta
adhesion contact model for the rolling

Fig. 4 Solution strategy of the rolling

tion of roller indentation „a… and adhesio

84 / Vol. 129, JULY 2007
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�f� The effect of adhesion induced bifurcation during pro-
gressive load, i.e., the“jumping on” stick discussed in
�28�, is not taken into account.

�g� Without loss of generality, it is assumed that Mappl=0 in
Fig. 1.

According to the approximation �e�, the noncontact adhesion
zone II in Fig. 1 vanishes, so Xb−=Xa− and Xb+=Xa+. Under these
approximations, the boundary-value problem defined by the con-
tact system in Fig. 1 is solved through the superposition of the
displacement-based solutions of two independent boundary-value
problems, as illustrated in Fig. 4. The corresponding contact
analysis can be divided into the following stages:

etween elastic bodies; „b… proposed
ntact

ntact with JKR adhesion; superposi-
ct b
co
-co

n rotation „b…

Transactions of the ASME

E license or copyright, see http://www.asme.org/terms/Terms_Use.cfm



p

.

d
�
c
u
i
a

d
�
t
s

a
d

fi
t
f

J

Downloa
�1� The roller indents the substrate with the depth �̃� at the
time instance �=0, Fig. 4�a�. Let 2l to be the length of the

contact zone, i.e., Xa0+−Xa0−=2l, and �l̄ is the average
elongation of the substrate at the two ends of the
indentation-induced contact zone, then the average trans-
verse strain on the contact surface, denoted as 
av, reads

�l̄

l
= 
av �5�

�2� The roller rotates clockwise through an angle �� while the
particles of the substrate surface within Xa0−�X1�Xa0+

adhere to the roller surface until a detachment takes place
where the contact zone becomes Xa−�X1�Xa+, illustrated
in Fig. 4�b�. During this rotation, relative sliding between
substrate and roller surface is permissible within the contact
zone but the substrate material particles at the two ends of
the contact zone are presumed to stick to the roller so there
is no change in the contact zone size, i.e.,

Xa0+ − Xa0− 
 Xa+ − Xa− �6�

which is identical to the approximations �b�, i.e., R�=V
and infinitesimal strain.

�3� When the roller continuously rotates and steadily travels
forward, once a detachment occurs at one end of the con-
tact zone, a new attachment is assumed to occur simulta-
neously at the another end; thus the stick zone size remains
constant in the coordinate system �Xi� that originated at the
intersection of the vertical central line and the bottom of the
roller.

�4� During the motion described by �1�–�3�, a detachment of
the stick-contact is determined by the condition when the
maximum normal separation stress in the contact zone is
equal to the maximum adhesion T0 prescribed by �1�; this
condition can be stated mathematically as follows:

max���22�X1��X2=0; Xa− � X1 � Xa+� = T0 �7�

The mathematical definitions of these two boundary-value
roblems will be given in the following sections.

2.6 Governing Equations

2.6.1 Galilean Transformation. The contact system of Fig. 1,
efined in a two-dimensional spatial Cartesian coordinate system
X1 ,X2� where the origin is at the intersection between the vertical
entral line and the bottom of the roller, can be considered as
nder a steady-state motion �33� when the approximations �a�–�d�
n Sec. 2.5 apply. Let V be the horizontal velocity of the substrate
nd � be time, then the Galilean transformation

X1 = x1 − V� X2 = x2 − R �8a�

efines the relation between �Xi� and a moving coordinate system
xi� embedded in the substrate. Since the roller is rigid, this con-
act system forms a boundary value problem in the semi-infinite
ubstrate.

By holding �x1 ,x2� fixed, according to �8a� f�� ,xi�= f�Xi� for an
rbitrary function f�� ,xi� and applying the chain rule, the time
erivative of f�� ,xi� yields

�f��,xi�
��

= − V
�f�Xi�
�X1

�8b�

Hence, the displacement, velocity, stress, and strain fields de-
ned in the coordinates �� ,x1 ,x2� can be expressed as functions of

he coordinates �X1 ,X2�, which define the “Carter problem” �11�

or the rolling contact illustrated in Fig. 1.

ournal of Tribology
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2.6.2 Boundary Condition and Equilibrium Solution in Com-
plex Plane. A two-dimensional Cartesian coordinate system
�X1 ,X2�, such as �8a�, can be represented in the complex plane as
by z=X1+ iX2 and z̄=X1− iX2. In the following analysis, the nota-
tions Re�f�z�� and Im�f�z�� denote the real and imaginary parts
f�z�, respectively, of a complex function; hence, if f�z�= f1�z�
+ if2�z�, then Re�f�z��= f1�z�, Im�f�z��= f2�z�. Also f̄�z�= f1�z�
− if2�z�.

According to the approximations �a�–�f� in Sec. 2.5, the rolling/
sliding contact illustrated in Fig. 1 becomes an elastic equilibrium
problem of a semi-infinite plane under given rolling/sliding
boundary conditions along the real axis. Let u1�t� and u2�t�, re-
spectively, be the horizontal and vertical displacements of the real
axis embedded in the substrate, where t represents the coordinate
along the real axis. Also, let p�t� and q�t�, respectively, be the
distribution of the normal pressure and shear stress on the real
axis, corresponding to the total compression force P and shear
force Q, respectively. According to Muskhelishvili �Sec. 113 in
�12��, p�t� and q�t� can be calculated by the following relation:

p�t� + iq�t� =
� + 1

�
	+�t� +

G�� − 1�
�

d

dt
�u1�t� + iu2�t�� �9�

where G is the shear modulus and � is the elastic coefficient
defined as a function of Poisson’s ratio; under plane strain condi-
tion it reads �=3−4v.

The 	+�t� in �9� represents the branch of a stress function 	�z�
when z approaches the real axis from the upper semi-infinite
plane, i.e., X2�0. This stress function is determined by

	�z� =
Z�z�
2�i�

L

h�t�dt

Z�t��t − z�
+ Z�z�Pm�z� �10�

where Z� � and Pm� � are functions to be determined, which will
be discussed in detail later; the integral of �10� is on the segment
L along the entire real axis. When a stress boundary condition is
prescribed on L,

h�z� = p�z� + iq�z� �11�

When a displacement boundary condition is given on L, then

h�z� = 2G
d

dz
�u1�z� + iu2�z�� �12�

For the rolling contact problem in Fig. 1, the displacement bound-
ary condition is given in the contact zone, as illustrated in Fig. 4;
the traction free condition is given outside the contact zone so h�z�
vanishes. Hence, the integral route L degenerates to the contact
zone X1

a−�X1�X1
a+ and the stress function is solvable when the

displacement h�z� is given.
When 	�z� is known, the stress distributions on the entire semi-

infinite plane are determined �12�:

�11 + �22 = 2�	�z� + 	̄�z̄�� �13a�

�22 − �11 + 2i�12 = 2��z̄ − z�	��z� − 	�z� − 	̄�z�� �13b�

For the problem of Fig. 1, at infinity �z→�� the following
condition should be satisfied:

�11 = �12 = �22 = 0 �14�
Also, the global equilibrium requires that

P =�
L

p�t�dt Q =�
L

q�t�dt �15�

where L denotes the contact zone. The global moment conserva-

tion requires
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Mappl =�
L

Rq�t�dt +�
L

tp�t�dt �16�

The relation �10� and boundary conditions �11�, �12�, and �14�–
16� are the governing equations to be solved.

A Rolling Contact Solution With Adhesion

3.1 Two Boundary Value Problems. The problem addressed
n Fig. 1, as discussed in Sec. 2.5, is solved by the superposition
f the solutions of the following two boundary-value problems
efined in Figs. 4�a� and 4�b�. Using the superscripts I and II to
enote the variables associated with the problem I and II, these
wo boundary-value problem can be stated as below.

Problem I (roller indentation): find uI= �u1
I ,u2

I � that satisfies the
lastic equilibrium condition and the boundary conditions which
pecify the motion illustrated in Fig. 4�a�,

u1
I = ũ�t� u2

I = − �� +
t2

2R
for X2 = 0 �t� � l �17�

nd

�22
I = �12

I = 0 for X2 = 0 �t� � l �18�

here �� is constant, ũ�t� is the surface transverse deformation to
e determined, t is a coordinate defined as

t = X1 − l̄ l̄ =
Xa+ + Xa−

2
l =

Xa+ − Xa−

2
�19�

he coordinate origin �t=0� is the geometrically symmetric center
f the contact zone size, see Fig. 4�a�. In �17� and �18� and the
nalysis hereafter, the superscript I indicates the quantities associ-
ted with the problem I and II to the quantities with the problem II
o be discussed. In this analysis the quantities with the orders of
�t4 /R3� are omitted.
Assuming that the surface transverse deformation in �17� can be

xpressed as a series expansion of a self-similar solution,

ũ = ũsym + ũskm �20�

ũsym = l
av�a1	 t

l

 + a3	 t

l

3

+ ¯ � �21�

ũskm = 
sv�	 t

l

2

+ a4	 t

l

4

+ ¯ � �22�

here ũsym is a skew-symmetric function that describes a trans-
erse deformation symmetrical to t=0 while ũskm is a symmetric
unction that characterizes the antisymmetrical part of the trans-
erse displacement ũ; the constants 
av ,
sv ,a1 ,a3 ,a4 , . . . are to be
etermined. According to �5� and �6� and associated approxima-
ions, we know that at t= ± l,

ũsym = l
av ũskm = 0

herefore

a1 = 1 − a3 a4 = − 1 �22a�

Problem II (roller stick-rotation): find uII= �u1
II ,u2

II� that satisfies
lastic equilibrium condition and the boundary conditions which
pecify the motion illustrated in Fig. 4�b�,

u1
II = ũskm + R���	1 −

1

2
	 t

R

2

−
��2

6

 +

t

R

��

2
�

for X2 = 0 �t� � l �23�
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u2
II = R�����

2
−

t

R
� for X2 = 0 �t� � l �24�

where ũskm is defined by �20� and �22�. The derivation of the
rotation induced surface deformation, i.e., the second part of
�23a�, is given in Appendix B.

Also,

�22
II = �12

II = 0 for X2 = 0 �t� � l �25a�

and the detachment condition when the cylinder rolls forward is as
follows

− p�− l� = T0 �25b�

When �X1
2+X2

2→�,

�11
II = − �11

I �22
II = − �22

I �12
II = − �12

I �26�

3.2 Solutions of Problem I and II. In general, according to
�12� the solutions of the stress function 	�z� for the problems I
and II have the following standard form:

	�z� =
G · Z�z�

2�i �
−l

l
dh�t�

dt

dt

Z�t��z − t�
+ Z�z�Pn�z� �10��

and

Pn�z� = C0 + zC1 + ¯ znC1 + ¯

where z is the complex plane, z=x+ iy; C0, C1 , . . . ,Cn are con-
stants to be determined; the boundary condition �25� requires the
product Pn�z� ·Z�z� vanishing at z=�, i.e., Pn�z��zn when Z�z�
�z−�n+1� at z→�. The function Z�z� is solved by enforcing 	�z�
to satisfy boundary conditions given on n+1 line segments. For
the problems defined by Figs. 4�a� and 4�b�, there is one line
segment with nonzero boundary condition, i.e., �17� and �18� or
�23a�, �23b� on �−l , l�. Thus, when n=0, Z�z� contains the singu-
larities in the solution induced by the line segments, since, as z
moves across each of them, 	�z� has a discontinuity. Therefore,
Z�z� has the form as in �12�

Z�z� =
1

�z − l��1/2�+i��z + l��1/2�−i� � =
log �

2�
� = 3 − 4v

�27�
By substituting the boundary conditions �17�, �18� or �23�, �24�

into �10�, the corresponding special solutions for problem I and II,
denoted as 	I and 	II, respectively, are

	I�z,l� = 
avl�a1
	1�z,l�

l
+ 3a3

	3�z,l�
l3 + ¯ � + i�	2�z,l�

R
�
�28a�

	II�z,l� = 
sv�2
	2�z,l�

l2 + 4a4
	4�z,l�

l4 + ¯ � −
��

R
	2�z,l�

+
��2

2
	1�z,l� − i��	1�z,l� �28b�

and

	stick�z,l� = 	I�z,l� + 	II�z,l� �29�

where the constants ai, i=1,3 ,4 , . . ., are defined in �20�–�22� and
are to be determined. The solution procedure of �28a�, �28b�, and
the detailed expression of the solved 	i, i=1,2 ,3 ,4, are given in
Appendix B.
Then, by substituting 	stick into �9�, one obtains
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p�t� + iq�t� = �i
k1 + k̃1z

�z2 − l2
+

k2 + k̃2z

�z2 − l2
+ Ã1

�z2 − l2 + Ã2�z2 − l2�3/2

+ Ã3z + ¯ �	 z + l

z − l

i�

+ Â1 + Â2z + ¯ �30�

here ki , k̃i , Ãi , Âi are constants determined by the coefficients
resented in �B2�–�B9� in Appendix B.

As illustrated in Fig. 3�b�, the first term on the right-hand side
f �30� causes the same stress singularity as that at a mode I crack

ip, where the coefficient k1 corresponds to �0 and k̃1 to the ��
hat varies linearly along the crack. Similarly, the second term of
30� is analogous to the stress intensity factor caused by shear
oading. They represent a pair of JKR-like singular adhesion trac-
ions at the ends of contact zone, in the normal and transverse
irections. The third term is the Hertz pressure and the remaining
erms refer to the effects of nonsingular adhesion tractions and
onsymmetric loads during rolling.

3.2.1 Removal of Singularities. In order to remove the singu-
arities that appear at z= ± l in solution �30�, the following two
dditional constraints �13�:

lim
z→l

�	stick�z,l��z − l�1/2� = 0 lim
z→−l

�	stick�z,l��z + l�1/2� = 0 �31�

re applied, which lead to the two additional relations,

k2 + ik1 = 0 k̃2 + ik̃1 = 0 �32�

o determine the coefficients in �22�. Subsequently, a special so-
ution for the boundary value problem depicted by Figs. 4�a� and
�b� is obtained. When the terms in �20�–�22� with power up to
he fourth order are taken into account, this solution has the fol-
owing form:

	stick�z,l� =
2G

� + 1
�	 z + l

z − l

i�

�z2 − l2�A1�z2 + l2� + A2z + A3�

+ A4z3 + A5z2 + A6z + A7� �33�

y substituting �33� into �9�, an explicit expression of the normal
ressure p�t� and tangential stress q�t� is obtained as below:

p�t� + iq�t� =
2G

�
��A1�z2 + l2� + A2z + A3 + B��z2 − l2���1

+ �� · �i cos�� log	 z + l

z − l

�

− sin�� log	 z + l

z − l

��� for �t� � l �34�

here the constants A1, A2, A3, A4, A5, A6, and A7 are determined
ccording to the three conditions in �26� and four constraints �real
nd imaginary parts� in �32�; B is a function of Ai. These constants
re solved and listed in Appendix B, expressed as the functions of
he parameters l, ��, 
sy, 
av, and a1.

3.2.2 Determination of the Parameters. The global equilib-
ium conditions �15� and �16� provide three constraints for deter-
ining the coefficients in the solution �29�. On the other hand,
hen z→�, �33� yields the Taylor’s expansion

	stick�z,l� = a−1z−1 + a−2z−2 + a−3z−3 + ¯ �35�

hich satisfies �14�. The coefficient a−1 is the residual for any
losed contour integral surrounding contact zone, which equals

he unbalanced forces within the contour. Hence,
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a−1 = −
Q + iP

2�
�36�

An additional energy conservation equation is introduced,

Q · R�� =�
−l

l

�u1
II · q�t� + u2

II · p�t��dt �37�

Equations �15�, �16�, �36�, and �37�, together with the adhesion
condition �25b�, are seven equations to determine the parameters
l, ��, 
sy, 
av, a1, and to establish the relationships between these
parameters and P, Q.

Remark: For the case of steady-state rolling with stick and full
sliding, the analysis procedure introduced in the previous sections
is still applicable. Assuming that the roller rotates continuously
with a sliding zone, within which there is no normal separation
nor stick zone. Under such a steady-state the angular velocity �
should be given, denoted as a rotation angle ��̃ per unit time.
Similar to Fig. 4, this problem can be divided into two individual
motions per unit time: �1� the roller drags the substrate moving
with an angle �� due to adhesion; �2� then the deformation field
of the substrate and contact zone are “frozen” while the roller
rotates with the angle ��̃−��. Hence, solutions obtained previ-
ously apply to stage �1�. Stage �2� has no effect on the structures
of stress and displacement distribution, although it causes extra
energy dissipation. Under this condition the energy conservation
�37� becomes

Q · R�� =�
−l

l

��u1 + R���̃ − ���� · q�t� + u2 · p�t��dt

�37a�

which leads to different values of l, 
sy, 
av upon the input ��̃.
When �31� and �32� do not apply, the singularities remain. A

corresponding rolling contact solution with JKR singular adhesive
traction is given by �30a�, whereby the intensity of singularities,
denoted as KI

coh �tension� and KII
coh �shear�, respectively, are

At the front edge of the contact zone:

K1
coh

2G
= k1 + l · k̃1 = ��11

K+ + ���12
K+�

l2

R
+ ��13

K+
sv
av + �14
K+
av

+ �15
K+��2 − �16

K+���l �38a�

K2
coh

2G
= k2 + l · k̃2 = �22

K+��l2

R
+ ��23

K+
sv
av + �25
K+��2 + �26

K+���l

�38b�

where

�11
K+ = − 2�2 +

1

2
�12

K+ = 2� �13
K+ =

8��2�2 + 1�
3

�14
K+ = − 2� �15

K+ = − � �16
K+ = − 1

�22
K+ = − �11

K+ �23
K+ = −

1

2
+

16

3
�2 −

8

3
�4

�25
K+ =

1

2
�26

K+ = − 2

At the trailing edge of the contact zone:

K1
coh

2G
= k1 − l · k̃1 = ��11

K− + ���12
K−�

l2

R
+ ��13

K−
sv
av + �14
K−
av

+ �K−��2 − �K−���l �39a�
15 16
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K2
coh

2G
= k2 − l · k̃2 = �22

K+��l2

R
+ ��23

K+
sv
av + �25
K+��2 + �26

K+���l

�39b�

here

�11
K− = �11

K+ �12
K− = − �12

K+ �13
K− =

8��2�2 − 1�
3

�14
K− = �14

K+ �15
K− = �15

K+ �16
K− = − �16

K+

�22
K− = �22

K+ �23
K− = �23

K+

�25
K− = �25

K+ �26
K− = − �26

K+

lso, according to �36�, one has

2Gk1 = Q 2Gk2 = P �40�

3.2.3 Friction Coefficients. According to �15� and �16�, the
otal normal and tangential forces as well as the rolling friction
oefficient

�R =
Q

P

ave been obtained. Applying the coefficients listed in Appendix
, the P, Q, and �R can be expressed as follows:
For the solution without JKR adhesive traction:

P

2G
= l��11

P l

R
+ �12

P 
sv
av + �13
P 
av + �14

P ����2� �41�

Q

2G
= l��11

Q l��

R
+ �12

Q 
sv
av + �13
Q ��� �42�

here

�11
P = − �4��2 + 4� + �� �12

P = �	16

3
�4 +

8

3
�2 + 1


�13
P = 2�14

P �14
P = � − 1

�11
Q = �11

P �12
Q = 8�	4����2 + 1� +

4�2

3
�1 − 2�� +

2

3
�� − 1�


�13
Q = − 2�14

P

he corresponding rolling friction coefficient is

�R =

l��

R
+

�12
Q

�11
P 
av
sv +

�13
Q

�11
P ��

l

R
+

�12
P

�11
P 
av
sv +

�13
P

�11
P 
av +

�14
P

�11
P ��2

�43�

or the solution with JKR adhesive traction:

�R =

l��

R
+ �11

� 
av
sv + 2�12
� ��

l

R
+ 2�21

� 
av + �22
� ��2

�44�

here

�11
� =

1

�22
� 	−

8

3
�4 +

16

3
�2 −

1

3

 �12

� = �21
� = −

1

�11
P

�22
� = − 2�2 −

1

2
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4 Results and Discussion

4.1 The Indentation With Nonsingular Adhesion. Let ��
=0, 
av=0, the solutions �41� and �42� degenerate to a cylinder
indentation contact defined by Fig. 4�a�,

P = 2G��11
P l2

R
+ �13

P 
avl� Q = 0 �45�

Applying �25b� to �34� �see Appendix B�,

T0 =
2G

�
��� − 1�
av − 2�

l

R
� �46�

where

� =
log �

2�
� = 3 − 4v

Combining �45� with �46�, the unknown 
av is cancelled and the
resulting relation below establishes the relationship among contact
zone size, applied normal load, and maximum adhesion,

l =
T0R�

2G��1 + 4�2��1 +�1 −
4���2 + 1�

�
	 PG

RT0
2
� �47�

When no external force is applied, i.e., P=0, two bifurcated so-
lutions of l, as illustrated in Fig. 5, are obtained,

Solution I�trivial�: l = 
av = 0

Solution II: l =
2�� − 1�

4��2 + 4� + �
R
av

By substituting the second solution into �46�, we reach the follow-
ing estimate of the relation between contact zone size and maxi-
mum adhesion which is exact when no external force and the
system is under infinitesimal deformation,

T0 =
�G

�
�4�2 + 1�

l

R
�47a�

or

l =
T0R

�G�4�2 + 1�
�47b�

4.2 The Rolling-Contact Solution With Adhesion. We focus
on the nonsingular solutions given in the previous section. The
major results are plotted in Figs. 6–9. Figures 6�a� and 6�b� dis-
play the relationships between 
av and �� under small applied
normal load for substrates with varying Poisson’s ratio, where 
av
characterizes the average surface transverse strain and �� stands
for the rotation deformation during rolling and the enhanced pro-
cess of attachment–adhesion–detachment. In these two diagrams

the normal load is represented by a dimensionless parameter P̄,

P̄= P / �bRG�; b is thickness, where b=1 is assumed for the plane

Fig. 5 Two solutions for indentation contact at P=0
strain condition, R is the radius of the roller, and G is the Young’s
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odulus. Figure 6�a� shows that under the same normal load the
verage transverse strain on the contact surface �
av� increases
onotonically when the value of the substrate Poisson’s ratio

ises. On other hand, 
av is smaller when T0, and the maximum
dhesion defined in �1�, is higher. This phenomenon is consistent
ith the results shown in Fig. 6�b� in which the relations between
oisson’s ratio and the maximum nondetachment rotation angle
� are given. It shows that a smaller adhesion leads to a smaller
� since a detachment will occur earlier. These conclusions are
onfirmed by the results in Figs. 6�c� and 6�d� in which the evo-
ution of 
av and �� for varying T0 are plotted when the normal
pplied load rises. From Figs. 6�a� and 6�b� one can also conclude
hat the Possion’s ratio essentially reflects the deformability of the
ontact surface. A higher Possion’s ratio leads to a higher surface
ransverse strain and nondetachment rotation angle. However, Fig.
�b� reveals a bifurcated phenomenon that, when adhesion is weak
nd the Possion’s ratio approaches 0.5 ��0.4�, detachment tends
o occur earlier. These seem to imply that plastic deformation may
ause higher drag force to detach.

Figures 7�a� and 7�b� display the comparisons of normal and
hear stress on the contact surface, respectively, between the de-
ived rolling-sliding-stick solution and the Hertz solution �without
olling�, where the stresses are normalized by a denominator,
G /�. A significant difference in the tangential stress distribution
Fig. 7�b�� can be seen where the shear stress under rolling-
ontact exhibits an oscillating behavior in the first half of the

Fig. 6 The solutions of „a… the average transverse surfac
„b… the rotation angle �� vs Poisson’s ratio at small no
increases; „d… the evolution of �� as P̄ increases
ontact zone towards the direction of rolling. The distribution of

ournal of Tribology
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normal stresses for rolling contact shows a similar trend as in the
case of the Hertz contact. However, in the adhesion case the dis-
tribution is no longer symmetric and a tension stress zone emerges
near the tail to Xa− within which the adhesion is effective to sus-
tain the contact surfaces sticking together during rolling-rotation
deformation. Although the deviation from the Hertz’s solution is
moderate, a decisive difference in the contact process is caused.

Plotted in Fig. 8 are snapshots of the normal and shear stresses
under varying loads. Figure 8�a�, displayed for the case of T0 /G
=0.01, demonstrates that the normal stress distribution gradually
deviates from the Hertz solution and is more concentrated in the
side close to the trailing edge of the contact zone when the applied
load decreases. This phenomenon is caused by the effect of tensile
stress on the trailing edge of the contact zone due to adhesion.
When the load is lower, additional pressure is required to keep the
system in equilibrium. Obviously, the reduction of normal stress
decreases the corresponding shear stress. Hence, an additional
“half-wave” of the tangential stress distribution with small ampli-
tude on the side opposite to the trailing edge appears, as demon-
strated in Figs. 7 and 8. Also, the plots in Fig. 8 show that the
stress distributions are somewhat deviated from “self-similar”
when applied load varies. This is caused by the second order term,
e.g., ��2, in �35�–�37� and in �41�–�44�; which leads to a nonlin-
ear relationship to the applied load, as plotted in Figs. 6�c� and
6�d�.

ontact strain �av vs Poisson’s ratio at small normal load;
l load; „c… the evolution of �av when normalized load P̄
e c
rma
In general, the obtained solution can be interpreted as a JKR-
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ype rolling adhesion contact solution without singularity, or a
ertz-type rolling contact solution with adhesion.

4.3 Resultant Moment and Definition of Friction
oefficient. The rolling friction coefficient �R, defined as the ra-

io between transverse resistance and normal pressure and explic-
tly expressed by �43�, has also been computed. The results are
lotted in Fig. 9 which shows that �R is no longer a constant but
an vary with load. According to this diagram one concludes that
dhesion is a major cause of friction resistance during rolling
ontact, since it keeps the substrate attached to the cylinder roller.

hen the normal load is very small, the adhesion force dominates
he contact, which leads to higher friction resistance. Whereas,
hen the applied normal load increases, the portion due to adhe-

ion reduces; so the effects of adhesion fade and the friction re-
istance decreases. Plotted in Fig. 10 are the relationship among

ig. 7 Comparison between rolling and nonrolling solutions
or the normal stress and shear stress: „a… normal stress; „b…
hear stress; „c… illustration of the deformation
aximum adhesion, total normal compression force, and the cor-

90 / Vol. 129, JULY 2007
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responding resultant moment. The left half of the diagram is the
relationship between resultant moment and adhesion when normal
compression is not present. The right half of the diagram is that
between moment and normal force under given maximum adhe-

sion, which shows a trend toward linearity when P̄ is not small.
Therefore, an “adhesion friction coefficient” defined below is

proposed to characterize the capability of a surface to resist a
rolling motion under these situations,

�A =
Q

T0R�A + P
�48�

where R is the radius of the roller, Q is the friction resistance force
that is parallel to the rolling/sliding direction, P is the applied
force perpendicular to the rolling direction; T0 is the maximum
adhesion per unit area; �A is a coefficient that related to the area
on which adhesion is present. Hence, �A is a function of the
Young’s modulus of substrate and the decohesion law during ad-
hesive contact. After performing numerical regression based on
the theoretical solutions obtained in this paper, the following ex-
pression of �A has been obtained when nonsingular adhesion is
present:

�A =
T0

6bG
�49�

where G is shear Young’s modulus and b is the thickness, b=1 for
plane strain.

5 Conclusions
In this analysis a procedure to obtain an analytical solution of

rolling contact with adhesion has been proposed and two solutions
have been obtained. In the first solution an adhesion law charac-
terized by a finite maximum adhesive traction is applied, which
essentially governs the process of attachment-adhesion-
detachment during rolling. The solution with JKR singular adhe-
sive traction has also been derived. By assuming the rotation
angle to be zero, the first solution degenerates to a solution of the
indentation contact with finite adhesion. From these theoretical
analyses the following conclusions have been obtained:

�1� The stress field obtained reveals that normal stress distribu-
tion in the contact zone is different from the Hertz solution
due to the presence of a tensile stress that causes the con-
tact surfaces to stick together and induces additional normal
pressure to maintain the system equilibrium. As the ampli-
tude of the externally applied normal pressure increases,
the effects of adhesion recedes and the stress distribution
exhibits a trend towards the Hertz solution. Hence, the de-
rived solution can be considered as a JKR-type rolling ad-
hesion contact solution without singularity, or a Hertz-type
rolling contact solution with adhesion.

�2� By assuming the rotation angle to be zero, the obtained
rolling contact solution degenerates to a solution of the in-
dentation contact with finite adhesion. This solution reveals
“dual states” when no external applied load: the indent will
either stay as “point” contact or form a self-adhesive sys-
tem. When the second case takes place, the following solu-
tion �Eq. �47b�� of the contact zone size has been obtained:

l =
T0R

�G�4�2 + 1�

if the system is under infinitesimal deformation; in �47b� R
is the radius of the roller, T0 is the maximum adhesion per
unit area, G is the shear modulus, and � is a material con-
stant correlated to Possion’s ratio.

�3� From the solutions the expression of rolling coefficients,
defined as the ratio of the transverse friction resistance and
normal pressure, have been obtained and are listed in �43�

and �44�. These relations, in conjunction with �47b� and the
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results plotted in Fig. 9 reveal that the rolling-stick contact
is a complex process with energy dissipation, the conven-
tional friction coefficient, defined as the ratio between tan-
gential resistance and normal compressive force, is not suf-
ficient to describe the physics involved in this process. In
order to characterize the adhesion-friction behavior under
this situation, this paper suggests an “adhesion friction co-
efficient” for plane strain rolling contact with nonsingular
adhesion that is defined by

�A =
Q

T0
2R/�6G� + P

�48��

where Q is the friction resistance force, parallel to the
rolling/sliding direction; P is the applied force normal to
the rolling direction �34,35�.

ppendix A: The Boundary Condition (23)
According to the geometric relation illustrated in Fig. 11, the

orizontal and vertical displacements, denoted as uII and vII, re-

Fig. 8 The solved normal pressure and shear stress dist
load: „a… the stresses plotted in the ˆXi‰ coordinate syste
the stresses plotted in the ˆt‰ coordinate system for the
ributions in contact-stick zone, varying with applied normal
m for the case of T0 /G=0.01, small applied normal load; „b…
case of T /G=0.15 under moderate normal load
pectively, can be expressed as

ournal of Tribology
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Fig. 9 The solved rolling-stick friction coefficient „37a… against

normalized load under different JKR adhesion
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ubstituting �A2� and �A3� into �A1�, and leaving out the high
rder small terms in the above relations one obtains:

According to the geometric relation illustrated in Fig. 11, the
orizontal and vertical displacements, denoted as u and v, respec-
ively, can be expressed as

u = 2R sin	��

2

cos	��

2
+ �
 v = 2R sin	��

2

sin	��

2
+ �

�A1��

pplying the Talyor’s expansions

ig. 10 The relationship among maximum adhesion T0, total
ormal compression force P, and the corresponding resultant
oment M, where T̄0=T0 / „6G…, P̄=P / „RG…, M̄=M / „RbG…, and b
1 for the plane strain
�� + 1�
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sin �� = �� −
��3

3!
+ ¯ cos �� = 1 −
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2!
+ ¯ �A2��

and

� =
t

R
�A3��

substituting �A2� and �A3� into �A1� and leaving out the high
order small terms in the above relations one obtains
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��

2
� for X2 = 0, �t� � l

�A4�

v = R�����

2
−

t

R
� for X2 = 0, �t� � l �A5�

Appendix B: A Brief Introduction of the Solution Pro-
cedure to Obtain (27)–(30)

Considering the integration equation, e.g., the first term on the
right-hand side of �10�

	�z� =
G · Z�z�

2�i �
−l

l
dh�t�

dt

dt

Z�t��z − t�
�B1�

where the function Z�z� is defined by �27�. When the coordinate z
moves along a path surrounding the singular point �l ,0� or
�−l ,0� from one side of the line segment ��x�= �t�� l ,y=0� to an-
other side, Z�z� obtains the increment with the amplitude ���.

The displacement within the contact zone, denoted as h�t� in
�B1�,

h�t� = u1�t� + iu2�t� at X2 = 0 �t� � l �B2�

essentially determines the final form of the stress function 	�z�.
When it has the following simple forms, respectively,

h1�t� = t h2�t� = t2 h3�t� = t3 h4�t� = t4 �B3�
the corresponding special solutions of �B1� are, respectively,

Fig. 11 Geometric relationship between stick-rotation angle
�� and displacement increments
	1�z,l� =
2G

� + 1�1 −
�z − 2i�l�
�z2 − l2 	 z + l

z − l

i�� �B4�

	2�z,l� =
2G

�� + 1��z − �2z2 − 4i�lz − �1 + 4�2�l2

2�z2 − l2 �	 z + l

z − l

i�� �B5�

	3�z,l� =
2G �z2 − � z3 − 2i�lz2 − 	1

2
+ 2�2
zl2 + i	1

3
+
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3
�2
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here �=log � /2� is the material constant determined by Pois-
on’s ratio. Equations �B2�–�B7� can be proven using the method
ntroduced in �Note 1 of Sec. 110 in �12��.

For the solution �33�

	stick�z,l� =
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� + 1
�	 z + l

z − l

i�

�z2 − l2�A1�z2 + l2� + A2z + A3� + A4z3

+ A5z2 + A6z + A7�
pplying �26� and �32� the coefficients are as below:
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he corresponding pressure and tangent shear are �Eq. �34��
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�
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here A1, A2, A3 are given by �B8� and
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When the cylinder rolls forward, the detachment condition
25b� has to be satisfied,

− p�− l� = T0
y substituting �34� into this relation,
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T0 = 2G		2�� − 1�
sv + 3�� − 1��1 − a1� + 3�1 − a1�	1

2
+ 2�2


+ 2
sv + �� − 1�a1

av +
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Also, the numerical solution shows that a1=1−� where ����2e
−2. So in the analysis, the following relation has been taken:

a1 � 1 �B10�
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