Rolling Contact Between Rigid
Cylinder and Semi-Infinite Elastic
Body With Sliding and Adhesion

Based on a hybrid superposition of an indentation contact and a rolling contact an
analytical procedure is developed to evaluate the effects of surface adhesion during
steady-state rolling contact, whereby two analytic solutions have been obtained. The first
solution is a Hertz-type rolling contact between a rigid cylinder and a plane strain
semi-infinite elastic substrate with finite adhesion, which is a JKR-type rolling contact but
without singular adhesive traction at the edges of the contact zone. The second solution
is of a rolling contact with JKR singular adhesive traction. The theoretical solution
indicates that, when surface adhesion exists, the friction resistance can be significant
provided the external normal force is small. In addition to the conventional friction
coefficient, the ratio between friction resistance force and normal force, this paper sug-
gests an “adhesion friction coefficient” which is defined as the ratio between friction
resistance force and the sum of the normal force and a function of maximum adhesive
traction per unit area, elastic constant of the substrate, and contact area that is charac-
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terized by the curvature of the roller surface. [DOL: 10.1115/1.2736431]
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1 Introduction

Contact friction is an issue in almost all fields in engineering
science (see, e.g. [1-4]). The problems of rolling-contact with
adhesion at small scales recently became a subject with increasing
interest in the research and application of micronanotribology
[5-9]. A remaining challenge among others is to obtain predictive
theoretical solutions for quantitatively specifying the effects of
adhesion during rolling contact. Most existing analyses, e.g.
[10,11], emphasize sliding and tangential friction while expression
of the normal stress from the static problem is borrowed to obtain
semianalytical solutions. The deviation from the exact solution is
not easy to identify, especially with adhesion present.

Based on the analytical methodologies of Muskhelishvili [12]
and Johnson [3], in conjunction with the solution strategies of
Achenbach et al. [13] for the shear Dugdule crack [14] and
Maugis [4] for indent contact with adhesion, this paper introduces
a procedure to obtain an exact solution of the steady-state rolling
contact with adhesion and/or sliding, using a hybrid superposition.

The history of contact mechanics and its state-of-the-art have
been carefully reviewed, e.g., in [3,4]. Hertz [1] first derived the
relationships among normal pressure, contact area, and contact-
induced penetration depth for frictionless contact between two
elastic ellipsoids, omitting the effects of adhesion. The Johnson-
Kendall-Roberts (JKR) theory [15] first reveals the effect of ad-
hesion analytically for Hertz contact. For hard materials, the
Derjaguin-Muller-Toporov (DMT) model [16] incorporates adhe-
sion force as a function of the separation between contact sur-
faces. However, in this theory the additional deformation caused
by the noncontact adhesion is ignored; instead, the deformation
field from the Hertz solution is adapted. Hughes and White [17]
generalized the framework to describe separation-dependent adhe-
sion between elastic bodies, which includes both “soft contact
model” (JKR theory) and “hard contact” (DMT theory). Using the
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Muskhelishvili-Dugdale model [12,14] of fracture mechanics,
Maugis [4] found a closed form solution of the static contact
between a semi-infinite plane and a punch with elliptic profile
associated with adhesion. The Maugis model has been extended to
the cases of cylinder/cylinder and cylinder/plate contact by Bar-
quins [18] and Baney et al. [19], respectively. Sari and co-authors
[8] have studied various cases of rolling contact with adhesion by
superposition of fracture mechanics solutions and contact solu-
tion, neglecting the effects of coupling between normal/shear
stress and tangential/normal dislplacement. On other hand, the
analytical solution of static contact with adhesion [20] indicates
that the effects of normal loading-induced substrate stretch can be
significant. For rough, frictional contact, Spence [21] introduced
the concept of self-similar contact (SSC), extending the Hertz
problem. The two-dimensional frictional punch on a semi-infinite
elastic plane with shallow crack has been studied by Hasebe
[22,23]. A self-similar frictional contact solution for a nano-
indentation has been obtained recently [24,25] based on the meth-
odology of Mossakovskii [26] and others. Further discussions
about adhesion-contact and its application can be found, e.g., in
[10,20,27-30].

For engineering application, an issue in contact problems with
adhesion can concern the definition of resistance to motion. Con-
ventionally the friction coefficient u is defined as the ratio of the
friction resistance force parallel to the rolling or sliding direction
and the external normal force. When adhesion is present, the re-
sistance to motion can be significant even without externally im-
posed pressure [4,27]. An effort is made to clarify this issue based
on the obtained solution.

2 Models and Governing Equations

2.1 About Rolling Contact. A rolling contact is somewhat
more complicated than static or quasistatic contact. Consider a
roller rolling on a surface () with an angular velocity  while a
force P normal to (), a force Q tangential to (), and a moment
M®P' are applied on the central axial line of the roller, see Fig. I;
also an additional moment M” is applied on the central axis,
which is the toque induced by normal load P, since the system is
not symmetric (Fig. 1). By varying the magnitudes and directions
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zone I: stick/sliding
zone I7: non-contact adhesion

Fig. 1 A rolling contact system with a normal force P, a tan-
gential force Q, and a moment PPP! applied on the central axial
line of the roller, where P induces additional moment M” since
the system is not symmetric. By varying the magnitudes and
directions of P, Q, and MFPP!, one obtains different cases of
rolling contacts that can be classified into three categories: (1)
free rolling: MPPP'=0, Q=0; (2) scratching: VPPP'+ P+ RQ=0 and
®=0; (3) w#0 and 0<{|RQ|+|VFPP|}, which is termed “con-
straint rolling” in this paper.

of M®P" and Q, one obtains different cases of rolling contact that
can be classified into three categories: (1) free rolling: M*P'=(,
0=0; (2) scratching: M*P'+M"+RQO=0, and w=0; (3) 0
<|M?*P!|+|RQ| and w+# 0, which is termed “constraint rolling” in
this paper.

Let Rw=V for constraint rolling, while the roller, Fig. 1, is an
infinitely long cylinder. The problem is then a plane strain contact
between a rolling cylinder with radius R and a semi-infinite elastic
substrate. Here, the cylinder is under normal pressure P and lat-
eral force Q per unit thickness along the direction perpendicular to
the plane. The adhesion is taken to occur both inside of the contact
zone (zone I) and outside of the contact zone (zone II).

2.2 About Adhesion During Contact. The physics of “fric-
tion” or “contact” always relates to the length scale considered.
Figure 2(a) illustrates a hierarchical structure of a contact prob-
lem; a macroscopic contact between two surfaces is actually the
adhesion and friction between asperities on the surfaces at micros-
cales. At the atomic scale, a contact is essentially a discontinuity
between two periodic atoms arrays and the contact between two
atoms means that Ay, the normal distance between centers of the
atoms, deviates from )\j‘\}‘)m, an equilibrium distance without inter-
acting force. )\?\Eom is usually on the same order as the lattice
constant. When Ay <\y°", the interatomic force is repulsive, oth-
erwise it is attractive. Hence, a tribological “contact” occurs when
the normal distance Ay between two contact surfaces is equal or
less than a character distance )\%, where the “surface” is defined as
the centers of the atoms that form the surface layer of a solid body
and the character distance )\?\, can be, e.g., the distance between
the surfaces within which an attractive interaction exists, where
the definition of )\% specifies a “contact.” When )\2, is, e.g., the
atomic equilibrium distance Ay, then in the corresponding “con-
tact zone” there will be only repulsive traction or no traction.
Alternatively, when the distance )\?\, is defined to be equal to a
“cutoff” distance N5, beyond which adhesion may be ignored
(see Fig. 2(b)), then adhesive traction takes place only within the
contact zone, as described by the JKR model [15]. Under this
situation, the noncontact adhesion zone II illustrated in Fig. 1
vanishes. Usually A5 is of the order of 10~'~10! nm.

In general, a surface adhesion can be expressed in the form as
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P10y =Ty 0<Ay<A\Y
T=1 e (\y) Ay < Ay =gt (1)
0 )\N > Acutoff
N

where ¢;(\y) and ¢,(\y), respectively, are functions of N\, the
normal distance between the surface pair; A,‘;}”o“ is a “cutoff” dis-
tance, beyond which adhesion becomes ignorable. In (1) the first
line defines “contact,” which states that within a contact zone (0
SV }\,(3,) the traction between two contact surfaces can be either
compressive or attractive with the amplitude less than 7,. The
combination of ¢;(\y) and ¢,(\y) defines a traction-separation
law which is similar to the interfacial cohesive law introduced by
Needleman [31], which can be, e.g., a linear relation characterized
by the maximum adhesion 7|, and the rate of decay T},

T
e(\y)=To—T\y forO<Ay= FO 2)
1

or the derivative of the Lennard-Jones-type potential,

dd m n
e(A\y) = —= and @LJ=80[<@) —(@) ] for0s<Ay=<o
d\y Ay Ay
3)

in ()-(3) oy, €9, A%, )\i}‘mff, Ty, and T, are materials constants.
For the potential in (3), 5= and ny, n, are determined
through the Hamaker integral over the interatomic potential
[324].

In general, the maximum adhesion 7, can be expressed in the
form of To=kys/\y°", where Ay°™ is the atomic equilibrium dis-
tance and k is a coefficient with values from 4 to 10 (see Sec.
1.2.4 of [4]).

2.3 Self-Similarity [21]. The steady-state rolling contact to
be studied is also assumed to possess dual self-similarities. First,
when the roller rolls with constant speed, at different time in-
stances the deformation solution fields are identical if these solu-
tions are defined in the coordinate system attached to the roller.
Second, at a given time instance, varying normal pressure leads to
a series of self-similar solutions, analogous to the solution ob-
tained by Spence [21] for the Hertz contact problem under pro-
gressive loading. For that case the self-similarity refers to the
dimensionless field solutions of u;/! and o;;/G, which are the
functions of dimensionless coordinates X;// only; here [/ is the
half-length of a contact zone, X; is the coordinate originated at the
bottom of the indent.

2.4 JKR, DMT, and Other Models of Adhesive Contact.
The JKR model [15] is the first mathematically complete contact
solution with adhesion and is also referred to as a “soft model” of
adhesion contact [4,17]. In this case, when deformation caused by
a contact is not ignorable either inside or outside of a contact
zone, the corresponding contact zone size will be relatively large
and the amplitude of )\IC\}"OH in (1) will be relatively small since the
latter is a material constant. One can assume that )\]C\',”"ffz )\?\, in (1)
and the ratio between }\10\, and contact zone size is infinitesimal.
Under this situation, the adhesion outside the contact zone is also
infinitesimal and a high amplitude of adhesion is required to main-
tain two contact surfaces sticking together near the two ends in-
side the contact zone. Such a high adhesive traction is described
mathematically as an additional singular term to the Hertz solu-
tion in [15], which is similar to the stress intensity factor solution
for the mode I Griffith crack tip in linear elastic fracture mechan-
ics. On other hand, the DMT model [16] accounts for the adhesion
outside of contact zones but adopts Hertz’s deformation solution,
which implies that the adhesive traction has no effect on the de-
formation of the contact surface. Thus, this theory is termed “hard
model.”

The intellectual merit of JKR theory lies in the introduction of

Transactions of the ASME

Downloaded 29 Jun 2007 to 129.105.215.213. Redistribution subject to ASME license or copyright, see http://www.asme.org/terms/Terms_Use.cfm



b——F
a Z
Q ) o
iy > —
(@
E (adhesion energy) T (traction ) T (traction )
dE
T ——=
0 (an, o
Vs :surface energy
Al [N A | Ay
= !
AO = lcutfojjr \ /]3‘] -0
angstrom angstrom pm
[ — A A
(b)

Fig. 2 (a) Hierarchical structure of a tribological process, the right most is the
contact/sliding between an iron substrate and a TiN particle at (001) surface,
the details of this analysis can be found in the Sec. 4.1 of [32]; (b) relationship
between adhesion energy, surface energy, and the definition of A, for JKR-type

adhesion

adhesion to contact and to reveal the similarity between the adhe-
sive contact solution and crack tip singular solution. According to
the solution procedure of a penny-shaped crack with a strip yield
zone ahead of the crack tip in the small scale yield fracture me-
chanics, Maugis obtained the complete analytical solution of the
contact between two elastic spheres with an additional noncontact
zone enhanced with constant adhesion o [4], which removes the
singular adhesion in JKR theory. When the noncontact adhesion
zone becomes infinite and o, vanishes, this solution coincides
with Hertz’s solution without adhesion. It degenerates to the JKR
solution provided the noncontact adhesion zone vanishes. When
the deformation field approaches Hertz’s solution, it describes the
DMT model with constant adhesion o(,. Hence, Maugis’ solution
essentially establishes the connections among Hertz’s solution,
JKR theory, and DMT model for static contact, as illustrated in
Fig. 3(a).

Although semianalytical solutions of rolling contact, e.g.,
[10,11], were developed more than a half century ago, it remains
a challenge to quantitatively describe the effects of adhesion on
rolling/sliding contact accurately. Following the scheme intro-
duced in [4], Baney and Hui [19] obtained a solution of the static
contact between cylinders with DMT adhesion. Barquins pro-
posed the procedure using fracture mechanics solutions to study
rolling contact with adhesion [18]. This concept has been further
developed by Sari and co-workers [8]. In [8] the Carter’s rolling/
sliding contact problem has been analyzed by the superposition of
various crack tip solutions and a contact solution neglecting the
coupling between normal/shear stress and tangential/normal dis-
placement. The obtained results agree with static JKR and
Maugis’ solutions in general. However, as indicated by Sec. 8 of
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[3], the effect of Possion’s ratio is significant for nonadhesion
rolling/sliding. Hence, the effect of couplings between normal and
transverse field variables can be remarkable for some adhesive
rolling contacts, e.g., for the cases at the micron scale as illus-
trated on the left end of Fig. 2(a) or the cases at the nanometer
scale where the short-ranged chemical bonding force dominates.

2.5 Proposed Model. In contrast to static problems, in a roll-
ing adhesive contact the system is no longer symmetric; so the
corresponding distribution of adhesion and sliding can be quite
different from these in static solutions. These distributions, in con-
junction with material constants that include the maximum adhe-
sion, Young’s modulus, and Poisson’s ratio, essentially determine
the mesoscopic behaviors of the rolling/sliding contact system.

This paper develops a model to obtain an analytical solution of
the steady-state rolling contact; the mathematical singular adhe-
sive tractions at the edges of the contact zone are removed. In-
stead, the traction-separation law defined by (1) is applied. As
illustrated in Fig. 3(b), the idea of the proposed solution procedure
is inspired by Maugis’ static adhesive contact solution and Achen-
bach et al.’s adhesive shear crack model [13]. The obtained solu-
tion degenerates to a rolling contact solution with JKR adhesion
when the singular term is taken into account.

In the contact system of Fig. 1, the following approximations
are adapted in the analysis of this study:

(a)  Rigid cylinder roller, linear elastic substrate;
(b)  The roller rotates clockwise with a constant angular ve-
locity w while the substrate advances horizontally from
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Fig. 3 (a) Models of adhesion contact between elastic bodies; (b) proposed
adhesion contact model for the rolling contact

right to left with a constant speed V; the case of Rw=V is (f)  The effect of adhesion induced bifurcation during pro-
taken into account first; gressive load, i.e., the“jumping on” stick discussed in
(c)  Infinitesimal strain; . _ [28]. is not taken into account.
(d)  The effects of inertia and weight are omitted; ()  Without loss of generality, it is assumed that M*P'=0 in

() The traction-separation relation (1), ie., T=T(\y)
[17,31], is applied. Furthermore, we first consider the
JKR theory without singular adhesion, so

Fig. 1.

According to the approximation (e), the noncontact adhesion
cutoff < 0 )\?, zone 1T in Fig. 1 vanishes, so X?~=X%" and X**=X?*. Under these
A =\ — =0 . .

N N approximations, the boundary-value problem defined by the con-
tact system in Fig. 1 is solved through the superposition of the
displacement-based solutions of two independent boundary-value
. problems, as illustrated in Fig. 4. The corresponding contact
Ay=0 (4)  analysis can be divided into the following stages:

where [ is the half-size of the contact zone; therefore the
following simplification is taken:

-

.»Y - "{ a+

roller indents without rotation with a rotation A®

@ (b)

X

Fig. 4 Solution strategy of the rolling-contact with JKR adhesion; superposi-
tion of roller indentation (a) and adhesion rotation (b)
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(1) The roller indents the substrate with the depth A | at the
time instance 7=0, Fig. 4(a). Let 2/ to be the length of the

contact zone, i.e., X“0*—X%0-=2/, and Al is the average

elongation of the substrate at the two ends of the

indentation-induced contact zone, then the average trans-

verse strain on the contact surface, denoted as &,,, reads

Al

7 =&y (5)

(2) The roller rotates clockwise through an angle Aw while the
particles of the substrate surface within X0~ <X, <X+
adhere to the roller surface until a detachment takes place
where the contact zone becomes X~ <X, < X%, illustrated
in Fig. 4(b). During this rotation, relative sliding between
substrate and roller surface is permissible within the contact
zone but the substrate material particles at the two ends of
the contact zone are presumed to stick to the roller so there
is no change in the contact zone size, i.e.,

Xa0+ _ Xa()— = X - X9 (6)

which is identical to the approximations (b), i.e., Rw=V
and infinitesimal strain.

(3) When the roller continuously rotates and steadily travels
forward, once a detachment occurs at one end of the con-
tact zone, a new attachment is assumed to occur simulta-
neously at the another end; thus the stick zone size remains
constant in the coordinate system {X;} that originated at the
intersection of the vertical central line and the bottom of the
roller.

(4) During the motion described by (1)—(3), a detachment of
the stick-contact is determined by the condition when the
maximum normal separation stress in the contact zone is
equal to the maximum adhesion T, prescribed by (1); this
condition can be stated mathematically as follows:

max{ 022(X1)|X2=0; XT<X, <X"}=T, (7)

The mathematical definitions of these two boundary-value
problems will be given in the following sections.

2.6 Governing Equations

2.6.1 Galilean Transformation. The contact system of Fig. 1,
defined in a two-dimensional spatial Cartesian coordinate system
{X|,X,} where the origin is at the intersection between the vertical
central line and the bottom of the roller, can be considered as
under a steady-state motion [33] when the approximations (a)—(d)
in Sec. 2.5 apply. Let V be the horizontal velocity of the substrate
and 7 be time, then the Galilean transformation

X1=X1—VT X2=.X2—R (861)

defines the relation between {X;} and a moving coordinate system
{x;} embedded in the substrate. Since the roller is rigid, this con-
tact system forms a boundary value problem in the semi-infinite
substrate.

By holding {x;,x,} fixed, according to (8a) f(7,x;)=f(X;) for an
arbitrary function f(7,x;) and applying the chain rule, the time
derivative of f(7,x;) yields

ofirx) __ | IfX)
ar X,
Hence, the displacement, velocity, stress, and strain fields de-
fined in the coordinates {7,x;,x,} can be expressed as functions of
the coordinates {X;,X,}, which define the “Carter problem” [11]
for the rolling contact illustrated in Fig. 1.

(80)
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2.6.2 Boundary Condition and Equilibrium Solution in Com-
plex Plane. A two-dimensional Cartesian coordinate system
{X;,X>}, such as (8a), can be represented in the complex plane as
by z=X;+iX, and z=X;—iX,. In the following analysis, the nota-
tions Re{f(z)} and Im{f(z)} denote the real and imaginary parts
f(z), respectively, of a complex function; hence, if f(z)=f(z)

+ifa(2), then Re{f(2)}=/f1(2), Im{f(2)}=/2(2). Also f(z)=fi(2)
—if>(2).

According to the approximations (a)—(f) in Sec. 2.5, the rolling/
sliding contact illustrated in Fig. 1 becomes an elastic equilibrium
problem of a semi-infinite plane under given rolling/sliding
boundary conditions along the real axis. Let u;(z) and u,(r), re-
spectively, be the horizontal and vertical displacements of the real
axis embedded in the substrate, where ¢ represents the coordinate
along the real axis. Also, let p(¢) and ¢(), respectively, be the
distribution of the normal pressure and shear stress on the real
axis, corresponding to the total compression force P and shear
force Q, respectively. According to Muskhelishvili (Sec. 113 in
[12]), p(r) and () can be calculated by the following relation:

1 G(k-1
L gy S
K K

p(0)+ial0)= S+ @] )
where G is the shear modulus and « is the elastic coefficient
defined as a function of Poisson’s ratio; under plane strain condi-
tion it reads k=3 -4v.

The ®*(z) in (9) represents the branch of a stress function ®(z)
when z approaches the real axis from the upper semi-infinite
plane, i.e., X,>0. This stress function is determined by

_Z(2) h(t)dt

P =2mi | Z0—2)

+Z(2)P,(2) (10)

where Z(') and P, () are functions to be determined, which will
be discussed in detail later; the integral of (10) is on the segment
L along the entire real axis. When a stress boundary condition is
prescribed on L,

h(z) = p(z) + ig(z) (11)

When a displacement boundary condition is given on L, then

) =267 @) i) (12)
For the rolling contact problem in Fig. 1, the displacement bound-
ary condition is given in the contact zone, as illustrated in Fig. 4;
the traction free condition is given outside the contact zone so /(z)
vanishes. Hence, the integral route L degenerates to the contact
zone X{"<X;<X{" and the stress function is solvable when the
displacement A(z) is given.

When ®(z) is known, the stress distributions on the entire semi-
infinite plane are determined [12]:

0'”+a'22=2[CD(z)+CI_>(Z)] (13a)

0y — 01y + 200, =2[(Z-2)P'(2) - P(z) - P(2)]  (13b)

For the problem of Fig. 1, at infinity (z—) the following
condition should be satisfied:

o =01p=09=0 (14)
Also, the global equilibrium requires that
P= f p(tydt Q= f q(t)dt (15)
L L

where L denotes the contact zone. The global moment conserva-
tion requires
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Mappl=qu(t)dt+f tp(t)dt (16)
L L

The relation (10) and boundary conditions (11), (12), and (14)—
(16) are the governing equations to be solved.

3 A Rolling Contact Solution With Adhesion

3.1 Two Boundary Value Problems. The problem addressed
in Fig. 1, as discussed in Sec. 2.5, is solved by the superposition
of the solutions of the following two boundary-value problems
defined in Figs. 4(a) and 4(b). Using the superscripts I and II to
denote the variables associated with the problem I and II, these
two boundary-value problem can be stated as below.

Problem I (roller indentation): find u! =[u11,u12J that satisfies the
elastic equilibrium condition and the boundary conditions which
specify the motion illustrated in Fig. 4(a),

2

t
=) uy=—6,+— forX,=0]=<I (17)
2R
and
oy=0,=0 forX,=0]>1 (18)

where &8, is constant, () is the surface transverse deformation to
be determined, ¢ is a coordinate defined as

o Xa+_xa—
= =

2 2 (19)

The coordinate origin (r=0) is the geometrically symmetric center
of the contact zone size, see Fig. 4(a). In (17) and (18) and the
analysis hereafter, the superscript I indicates the quantities associ-
ated with the problem I and II to the quantities with the problem II
to be discussed. In this analysis the quantities with the orders of
o(t*/R3) are omitted.

Assuming that the surface transverse deformation in (17) can be
expressed as a series expansion of a self-similar solution,

u= Usym + Uskm (20)
5 t r\?
Msymzleav|:al(2)+a3<z) + :| (21)
2 4
ﬁskmz 75v|:<§> +a4<§) + o :| (22)

where iy, is a skew-symmetric function that describes a trans-
verse deformation symmetrical to =0 while iy, is a symmetric
function that characterizes the antisymmetrical part of the trans-
verse displacement i; the constants &,,, ¥q,,d1,d3,d4,... are to be
determined. According to (5) and (6) and associated approxima-
tions, we know that at r==/,

Usym = lsav Uskm = 0
therefore

(22a)

Problem II (roller stick-rotation): find u!? =[u111,u121J that satisfies
elastic equilibrium condition and the boundary conditions which
specify the motion illustrated in Fig. 4(b),

o o~ 1/ 1\ Aw? t Aw
Uy =llgm+RAw| |\ 1-=|\ = —— |+ ——
2\R 6 R 2

for X,=0 [t| <1

a1=1—a3 a4=—1

(23)
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" Ao t
uy = RAw >R for X, =0 |t| <1

> (24)

where iy, is defined by (20) and (22). The derivation of the
rotation induced surface deformation, i.e., the second part of
(23a), is given in Appendix B.

Also,

oh=05h=0 for X,=0f|>1 (25a)

and the detachment condition when the cylinder rolls forward is as
follows

-p(=D=T, (25b)
When VX7+X3—,
01111=_0'111 01212=_0'122 01112=_0'112 (26)

3.2 Solutions of Problem I and II. In general, according to
[12] the solutions of the stress function ®(z) for the problems I
and II have the following standard form:

G-2) (" dn(t) dr
and
P(2)=Co+zCi+ - 7"C; + -+
where z is the complex plane, z=x+iy; Cy, Cy,...,C, are con-

stants to be determined; the boundary condition (25) requires the
product P,(z)-Z(z) vanishing at z=», i.e., P,(z) ~z" when Z(z)
~ 7z at z— o0 The function Z(z) is solved by enforcing ®(z)
to satisfy boundary conditions given on n+1 line segments. For
the problems defined by Figs. 4(a) and 4(b), there is one line
segment with nonzero boundary condition, i.e., (17) and (18) or
(23a), (23b) on [—1,1]. Thus, when n=0, Z(z) contains the singu-
larities in the solution induced by the line segments, since, as z
moves across each of them, ®(z) has a discontinuity. Therefore,
Z(z) has the form as in [12]

1 _log
(Z— 1)(1/2)+i5(z+ l)(]/Z)—iB B_ 2

Z(z) = k=3-4v

27)

By substituting the boundary conditions (17), (18) or (23), (24)
into (10), the corresponding special solutions for problem I and II,
denoted as @ and @, respectively, are

Di(z]) . Dyl ] .[cbz(z,z)]
+3a; e + o +1—R

Dz, = savl[al

(28a)

D,(z,1 D,(z,1 A

(DH(Z’Z) = 75v|:2 2(2Z ) +4a4 4(5 ) + - :| - _w(l)z(z’l)
l [ R
Aw? )
+ T(Dl(z’l) —iAw®(z,1) (28b)
and

Dy (z.0) = D'(z.1) + D'(z.1) (29)

where the constants a;, i=1,3,4,..., are defined in (20)-(22) and
are to be determined. The solution procedure of (28a), (28b), and
the detailed expression of the solved ®;, i=1,2,3,4, are given in
Appendix B.

Then, by substituting @ into (9), one obtains
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kl+glz k2+k22

p(0)+ig(t) =) i===+ +A'l\z — P+ A2 -
N2-12 NP -P
~ z+1\# . N
+Azz+ - - +A + A+ (30)
-

where k;,k;,A;,A; are constants determined by the coefficients
presented in (B2)—(B9) in Appendix B.

As illustrated in Fig. 3(b), the first term on the right-hand side
of (30) causes the same stress singularity as that at a mode I crack

tip, where the coefficient k; corresponds to o and k; to the Ao
that varies linearly along the crack. Similarly, the second term of
(30) is analogous to the stress intensity factor caused by shear
loading. They represent a pair of JKR-like singular adhesion trac-
tions at the ends of contact zone, in the normal and transverse
directions. The third term is the Hertz pressure and the remaining
terms refer to the effects of nonsingular adhesion tractions and
nonsymmetric loads during rolling.

3.2.1 Removal of Singularities. In order to remove the singu-
larities that appear at z==/ in solution (30), the following two
additional constraints [13]:

lim[ Dy (z,0)(z - 1)1/2] =0 Hm[ Dy (z,D(z + 1)1/2] =0 (31)
7=l ==l
are applied, which lead to the two additional relations,

ky+ik; =0 ky+ik; =0 (32)
to determine the coefficients in (22). Subsequently, a special so-
lution for the boundary value problem depicted by Figs. 4(a) and
4(b) is obtained. When the terms in (20)—(22) with power up to
the fourth order are taken into account, this solution has the fol-

lowing form:

2G z+1

Dyionlz,l) = —— <_ ) V2 -1 {A (Z +lz)+A22+Az}
k+1|(\z-1
+A4z3+A5z2+A6z+A7} (33)

By substituting (33) into (9), an explicit expression of the normal
pressure p(7) and tangential stress ¢(7) is obtained as below:

p(t)+zq(t)-2—{[A (2 + ) + Ayz + Ay + BINZ2 - PVk(1

+K) - [icos[ﬂlog(z—ﬂﬂ
z—1
—sin[ﬁlog(Z—HH]} for |f| <1
z-1

where the constants Ay, A, A3, Ay, As, Ag, and A, are determined
according to the three conditions in (26) and four constraints (real
and imaginary parts) in (32); B is a function of A;. These constants
are solved and listed in Appendix B, expressed as the functions of
the parameters I/, Aw, vy, &,y, and a;.

(34)

3.2.2  Determination of the Parameters. The global equilib-
rium conditions (15) and (16) provide three constraints for deter-
mining the coefficients in the solution (29). On the other hand,
when z— o, (33) yields the Taylor’s expansion

Cbstick(zal) = a-]Z_l + a_zz_z + a_3z_3 [P (35)

which satisfies (14). The coefficient a_; is the residual for any
closed contour integral surrounding contact zone, which equals
the unbalanced forces within the contour. Hence,
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Q+iP

== 36
a- Py (36)
An additional energy conservation equation is introduced,
1
O -RAw= f (Ul q(0) + u - p(1))dt (37)
-l

Equations (15), (16), (36), and (37), together with the adhesion
condition (25b), are seven equations to determine the parameters
I, Aw, vy, €4, a;, and to establish the relationships between these
parameters and P, Q.

Remark: For the case of steady-state rolling with stick and full
sliding, the analysis procedure introduced in the previous sections
is still applicable. Assuming that the roller rotates continuously
with a sliding zone, within which there is no normal separation
nor stick zone. Under such a steady-state the angular velocity
should be given, denoted as a rotation angle A@ per unit time.
Similar to Fig. 4, this problem can be divided into two individual
motions per unit time: (1) the roller drags the substrate moving
with an angle Aw due to adhesion; (2) then the deformation field
of the substrate and contact zone are “frozen” while the roller
rotates with the angle A@—Aw. Hence, solutions obtained previ-
ously apply to stage (1). Stage (2) has no effect on the structures
of stress and displacement distribution, although it causes extra
energy dissipation. Under this condition the energy conservation
(37) becomes

I
0 -RAw= f [(u; + R(AA® - Aw)) - q(t) + uy - p(1)]dt
-

(37a)

which leads to different values of [, y;,, &,, upon the input A&.
When (31) and (32) do not apply, the singularities remain. A
corresponding rolling contact solution with JKR singular adhesive
traction is given by (30a), whereby the intensity of singularities,
denoted as Kth (tension) and Kﬁ’h (shear), respectively, are
At the front edge of the contact zone:

oh 2
[

1 K+ K+

G =k1+l-k1 (a/11 +Awa12)R + ()5 YovEay + A1y Eay

+ A - o Aw]l (38a)

coh

=ky+1- /:2 = a22 + [a23 YVev€ay + a25 AW+ a/2+Aw]l

(38b)
where
8828 +1)
all__2:82+_ 12—218 aﬁ': 3
a14=—2/3 a{(;z‘lg a{((:':—l
1 16 8
+=_aK+ K+=__+_ 2 _ 2
22 1 %3 5 3,3 3,34
K+ 1 K+
“25=5 e ==—2

At the trailing edge of the contact zone:

coh 2

- /
1 _ _ _ _
2G = kl =1 kl = (afl + Awa{(Z )E + [(1{(3 Ysv€ay T aﬁt Eay

+ aﬁ“sz - aﬁ)—Aw]l (39a)
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oh 2
~ Awl
2_ - ky=1-ky= a5 —— +[ah5 Y&y + dhs Aw? + b Aw]l
2G R
(390)
where
8B(2B° - 1)
K-_ K K- K. K-
ay =@y dy=-apy a3 = 3
K- _ K+ K- _ K+ K- _ K+
Ay =0y Qs =05 O == Qg
K-_ K K-_ K
ay =@y, =y
K-_ K+ K- K+
(s = Qys Qe == Qg
Also, according to (36), one has
2Gk;=Q 2Gk,=P (40)

3.2.3 Friction Coefficients. According to (15) and (16), the
total normal and tangential forces as well as the rolling friction

coefficient

0
R_=
=P

have been obtained. Applying the coefficients listed in Appendix

B, the P, Q, and ,uR can be expressed as follows:
For the solution without JKR adhesive traction:

P l
E = l[aflE + alfz'ysvsaV + aﬂsav + af4(Aw)2:|

0 Aw
E =1 CKIQIT + aIQZ’)/svsav + a1Q3Aw

where
P ) P 16 8 ,
allz_(47TB +4B+m) Ay =T 3‘,34+§,8 +1

P_~ P P _
ap=2a)y dy=k-1

0 B

(41)

(42)

43 2
alQl = a{)l ap = 8,3(477/3([32"' 1)+ T(l —2m) + 5(77— 1))

0 _ P
ap=-2ay,

The corresponding rolling friction coefficient is

0]
Aw ap o
R + P EavVsy t P w
g = @ a1
R=

I o af o

1 12 13 147 2

R+ peavysv+ Peav+ P w
@y ayy ayy

For the solution with JKR adhesive traction:

Aw
R + aflsav'}/sv + zafZAw

MR = /
zF 208, &, + A A0?

where

R
=™

1 8 16 1
afy = _<— BB - _> alfy=ab =~
a3 3 3

1
0‘52:—2/32—5
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(43)

(44)

P

(]
[e=]

{a} solution [ trivial solution {i=0)

(b} solution |); seadhesion

Fig. 5 Two solutions for indentation contact at P=0

4 Results and Discussion

4.1 The Indentation With Nonsingular Adhesion. Let Aw
=0, &,,=0, the solutions (41) and (42) degenerate to a cylinder
indentation contact defined by Fig. 4(a),

lZ
P= ZG[ aflE + af3savl:| 0=0 (45)
Applying (25b) to (34) (see Appendix B),
2G [
T0=_|:(K_1)8av_23_:| (46)
K R
where
lo
s L e
2

Combining (45) with (46), the unknown &,, is cancelled and the
resulting relation below establishes the relationship among contact
zone size, applied normal load, and maximum adhesion,

TRk \/ 477(/32“)(&)
l_sz(1+4ﬁz)[l+ == RT? “7)

When no external force is applied, i.e., P=0, two bifurcated so-
lutions of /, as illustrated in Fig. 5, are obtained,

Solution I(trivial): [=g,,=0

: 2(k=1)
Solution II:  [=——+-—"——"Rg,,
4B +4B+ T
By substituting the second solution into (46), we reach the follow-
ing estimate of the relation between contact zone size and maxi-
mum adhesion which is exact when no external force and the
system is under infinitesimal deformation,

Ty= W—KG(432 + l)l_t{ (47a)

or
TR
= — 5 (47b)
TG(A4p +1)

4.2 The Rolling-Contact Solution With Adhesion. We focus
on the nonsingular solutions given in the previous section. The
major results are plotted in Figs. 6-9. Figures 6(a) and 6(b) dis-
play the relationships between &,, and Aw under small applied
normal load for substrates with varying Poisson’s ratio, where ¢,,
characterizes the average surface transverse strain and Aw stands
for the rotation deformation during rolling and the enhanced pro-
cess of attachment—adhesion—detachment. In these two diagrams

the normal load is represented by a dimensionless parameter P,

P=P/(bRG); b is thickness, where b=1 is assumed for the plane
strain condition, R is the radius of the roller, and G is the Young’s

Transactions of the ASME



0.06

0.05 4
0.04 1
gav

0.03 4

0.024

0.01

0.00 r T v T T T T T v T

0.28 0.32 0.36 0.40 044
V (Possion’s ratio)
0.0006 - i =0.0001
GR
u]
T, /G
0.0005 + —1—0.015
—— 0.004
[Aa)
0.0004
0.0003 - ./././././-/'”J’\\
0.0002 T T T T 1
0.25 0.30 0.35 0.40 045

V (Possion’s ratio)

0.00 g T T T T 1
0.00

0.012 1
0.010 4
0.008 4

[Acd

0.006 4

00044 P&

0.002 4

0.000
0.00

Fig. 6 The solutions of (a) the average transverse surface contact strain ¢,, vs Poisson’s ratio at small normal load;
(b) the rotation angle Aw vs Poisson’s ratio at small normal load; (c) the evolution of ¢,, when normalized load P

increases; (d) the evolution of Aw as P increases

modulus. Figure 6(a) shows that under the same normal load the
average transverse strain on the contact surface (g,,) increases
monotonically when the value of the substrate Poisson’s ratio
rises. On other hand, ¢,, is smaller when 7|, and the maximum
adhesion defined in (1), is higher. This phenomenon is consistent
with the results shown in Fig. 6(b) in which the relations between
Poisson’s ratio and the maximum nondetachment rotation angle
Aw are given. It shows that a smaller adhesion leads to a smaller
Aw since a detachment will occur earlier. These conclusions are
confirmed by the results in Figs. 6(c) and 6(d) in which the evo-
lution of &,, and Aw for varying T, are plotted when the normal
applied load rises. From Figs. 6(a) and 6(b) one can also conclude
that the Possion’s ratio essentially reflects the deformability of the
contact surface. A higher Possion’s ratio leads to a higher surface
transverse strain and nondetachment rotation angle. However, Fig.
6(b) reveals a bifurcated phenomenon that, when adhesion is weak
and the Possion’s ratio approaches 0.5 (>0.4), detachment tends
to occur earlier. These seem to imply that plastic deformation may
cause higher drag force to detach.

Figures 7(a) and 7(b) display the comparisons of normal and
shear stress on the contact surface, respectively, between the de-
rived rolling-sliding-stick solution and the Hertz solution (without
rolling), where the stresses are normalized by a denominator,
2G/ k. A significant difference in the tangential stress distribution
(Fig. 7(b)) can be seen where the shear stress under rolling-
contact exhibits an oscillating behavior in the first half of the
contact zone towards the direction of rolling. The distribution of

Journal of Tribology

normal stresses for rolling contact shows a similar trend as in the
case of the Hertz contact. However, in the adhesion case the dis-
tribution is no longer symmetric and a tension stress zone emerges
near the tail to X“~ within which the adhesion is effective to sus-
tain the contact surfaces sticking together during rolling-rotation
deformation. Although the deviation from the Hertz’s solution is
moderate, a decisive difference in the contact process is caused.

Plotted in Fig. 8 are snapshots of the normal and shear stresses
under varying loads. Figure 8(a), displayed for the case of Ty/G
=0.01, demonstrates that the normal stress distribution gradually
deviates from the Hertz solution and is more concentrated in the
side close to the trailing edge of the contact zone when the applied
load decreases. This phenomenon is caused by the effect of tensile
stress on the trailing edge of the contact zone due to adhesion.
When the load is lower, additional pressure is required to keep the
system in equilibrium. Obviously, the reduction of normal stress
decreases the corresponding shear stress. Hence, an additional
“half-wave” of the tangential stress distribution with small ampli-
tude on the side opposite to the trailing edge appears, as demon-
strated in Figs. 7 and 8. Also, the plots in Fig. 8 show that the
stress distributions are somewhat deviated from “self-similar”
when applied load varies. This is caused by the second order term,
e.g., Aw?, in (35)—(37) and in (41)—(44); which leads to a nonlin-
ear relationship to the applied load, as plotted in Figs. 6(c) and
6(d).

In general, the obtained solution can be interpreted as a JKR-
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Fig. 7 Comparison between rolling and nonrolling solutions
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shear stress; (c) illustration of the deformation

type rolling adhesion contact solution without singularity, or a
Hertz-type rolling contact solution with adhesion.

4.3 Resultant Moment and Definition of Friction
Coefficient. The rolling friction coefficient g, defined as the ra-
tio between transverse resistance and normal pressure and explic-
itly expressed by (43), has also been computed. The results are
plotted in Fig. 9 which shows that uy is no longer a constant but
can vary with load. According to this diagram one concludes that
adhesion is a major cause of friction resistance during rolling
contact, since it keeps the substrate attached to the cylinder roller.
When the normal load is very small, the adhesion force dominates
the contact, which leads to higher friction resistance. Whereas,
when the applied normal load increases, the portion due to adhe-
sion reduces; so the effects of adhesion fade and the friction re-
sistance decreases. Plotted in Fig. 10 are the relationship among
maximum adhesion, total normal compression force, and the cor-

490 / Vol. 129, JULY 2007

responding resultant moment. The left half of the diagram is the
relationship between resultant moment and adhesion when normal
compression is not present. The right half of the diagram is that
between moment and normal force under given maximum adhe-

sion, which shows a trend toward linearity when P is not small.

Therefore, an “adhesion friction coefficient” defined below is
proposed to characterize the capability of a surface to resist a
rolling motion under these situations,

_9
ToRK* + P

where R is the radius of the roller, Q is the friction resistance force
that is parallel to the rolling/sliding direction, P is the applied
force perpendicular to the rolling direction; 7|, is the maximum
adhesion per unit area; «* is a coefficient that related to the area
on which adhesion is present. Hence, «x* is a function of the
Young’s modulus of substrate and the decohesion law during ad-
hesive contact. After performing numerical regression based on
the theoretical solutions obtained in this paper, the following ex-
pression of x* has been obtained when nonsingular adhesion is
present:

ph= (48)

T
w=—2 (49)
6bG
where G is shear Young’s modulus and b is the thickness, b=1 for
plane strain.

5 Conclusions

In this analysis a procedure to obtain an analytical solution of
rolling contact with adhesion has been proposed and two solutions
have been obtained. In the first solution an adhesion law charac-
terized by a finite maximum adhesive traction is applied, which
essentially governs the process of attachment-adhesion-
detachment during rolling. The solution with JKR singular adhe-
sive traction has also been derived. By assuming the rotation
angle to be zero, the first solution degenerates to a solution of the
indentation contact with finite adhesion. From these theoretical
analyses the following conclusions have been obtained:

(1) The stress field obtained reveals that normal stress distribu-
tion in the contact zone is different from the Hertz solution
due to the presence of a tensile stress that causes the con-
tact surfaces to stick together and induces additional normal
pressure to maintain the system equilibrium. As the ampli-
tude of the externally applied normal pressure increases,
the effects of adhesion recedes and the stress distribution
exhibits a trend towards the Hertz solution. Hence, the de-
rived solution can be considered as a JKR-type rolling ad-
hesion contact solution without singularity, or a Hertz-type
rolling contact solution with adhesion.

(2) By assuming the rotation angle to be zero, the obtained
rolling contact solution degenerates to a solution of the in-
dentation contact with finite adhesion. This solution reveals
“dual states” when no external applied load: the indent will
either stay as “point” contact or form a self-adhesive sys-
tem. When the second case takes place, the following solu-
tion (Eq. (47b)) of the contact zone size has been obtained:

__ TR
T mGEAp+1)

if the system is under infinitesimal deformation; in (47b) R
is the radius of the roller, T} is the maximum adhesion per
unit area, G is the shear modulus, and S is a material con-
stant correlated to Possion’s ratio.

(3) From the solutions the expression of rolling coefficients,
defined as the ratio of the transverse friction resistance and
normal pressure, have been obtained and are listed in (43)
and (44). These relations, in conjunction with (47b) and the
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results plotted in Fig. 9 reveal that the rolling-stick contact
is a complex process with energy dissipation, the conven-
tional friction coefficient, defined as the ratio between tan-
gential resistance and normal compressive force, is not suf-
ficient to describe the physics involved in this process. In
order to characterize the adhesion-friction behavior under
this situation, this paper suggests an “adhesion friction co-
efficient” for plane strain rolling contact with nonsingular
adhesion that is defined by

A_—Q
r=T0
TOR/(6G)+P

where Q is the friction resistance force, parallel to the
rolling/sliding direction; P is the applied force normal to
the rolling direction [34,35].

(48")

Appendix A: The Boundary Condition (23) . 001 fee_  ROE 0.06 a0rs

According to the geometric relation illustrated in Fig. 11, the
horizontal and vertical displacements, denoted as u"" and v', re- Fig.9 The solved rolling-stick friction coefficient (37a) against
spectively, can be expressed as normalized load under different JKR adhesion
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Fig. 10 The relationship among maximum adhesion T,, total
normal compression force P, and the corresponding resultant

moment M, where Ty=To/(6G), P=P/(RG), M=M/(RbG), and b
=1 for the plane strain

" [Aw Aw " C[Aw) | [Aw
u =2Rsin| — |cos| — + 60| v =2Rsin| — |sin| — + 6
2 2 2 2

(A1)

Applying the Talyor’s expansions

3 2
A
SiNAw=Aw———+ - coSAw=1— — 4 - (A2)
3! 2!
and
o=— (A3)
"R

substituting (A2) and (A3) into (A1), and leaving out the high
order small terms in the above relations one obtains:

According to the geometric relation illustrated in Fig. 11, the
horizontal and vertical displacements, denoted as « and v, respec-
tively, can be expressed as

. (Aw) (Aw ) . (Aw) . (Aw )
u=2Rsin| — |cos| — + 60| v=2Rsin| — |sin| — + 6
2 2 2 2

(A1)
Applying the Talyor’s expansions

Fig. 11 Geometric relationship between stick-rotation angle
Aw and displacement increments

3 2

. Aw
smAw:Aw—?+ cosAw:l—?+'-- (A2)

and
I
R

substituting (A2) and (A3) into (Al) and leaving out the high
order small terms in the above relations one obtains

11\ Aw?\ 1Aw
u=RAw||1-=|=] —— |+ =—| forX,=0, =1
2\R 6 R 2

0= (A3")

(A4)

Aw

t
v:RAw[———:| for X,=0, =!I (A5)
2 R

Appendix B: A Brief Introduction of the Solution Pro-
cedure to Obtain (27)-(30)

Considering the integration equation, e.g., the first term on the
right-hand side of (10)

d(z) =

1
G-7(z) J dh(r)  dt 1)

2 i dt Z(t)(z—-1)

-
where the function Z(z) is defined by (27). When the coordinate z
moves along a path surrounding the singular point {/,0} or
{~1,0} from one side of the line segment {|x|=|¢f|<1,y=0} to an-
other side, Z(z) obtains the increment with the amplitude |«|.
The displacement within the contact zone, denoted as A(z) in
(B1),

h(t) = u,(t) + iuy(t) at X,=0 [t| <1 (B2)
essentially determines the final form of the stress function ®(z).
When it has the following simple forms, respectively,

)=t h()=r h)=r h@)=1"

the corresponding special solutions of (B1) are, respectively,

(B3)

26 (z—ZiBl)(Z_”>iﬁ
(D'(Z’l)_x+1{1_ N2 -1 \z—1 o
26 222~ 4iplz — (1 + 41 (Z_”)’ﬂ
(IDz(z,l)—(K+1){Z—[ NP ] Iy (B5)
3o 2 l 2) 2 (l i 2) 3
o201 2P <2+2/3 i (Z_”)iﬁ (B6)
1(z, P - Ny z-1
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4
p |2 -2iBIE - (% + 2/32)z212 + z(é + 5,82>le3 - (é +B - -ﬁ“)l“

1 2
3 3

__26 3 i+l
(I)4(z,l)—(K+1) ¢ (z—l)

where B=log k/21r is the material constant determined by Pois-
son’s ratio. Equations (B2)—(B7) can be proven using the method
introduced in (Note 1 of Sec. 110 in [12]).

For the solution (33)

26 | [(z+1\* ——
Dyiek(z,0) = 1 (;) V2= {A (P + )+ Az + A3t + A2

+AZ+ A+ A,

applying (26) and (32) the coefficients are as below:

4sav75v Ssav’ysviﬁ (_ 3+ 3al)sav
Al = l—3 2= 12 + l2

1
— 2y — 4yl = 22>)
(6(1_(11)383\/ 1) ( Ysv 7sv(2+ B €av Aw
A3= — Y —— |1+

+—
l R l R
48V’YSV
A4=—al—3
3(1 - al)eav ! 28av75v Aw
A=— =_+——_
> 2 TR R
e (L ES
= - - - + - + | —
7 R ysvﬂ Vsv SB 3B Eav
281 . 1 Aw?
+?)Aw)l—(3—2a1—3(l—a|)(5+252>)8av—7
(B8)

The corresponding pressure and tangent shear are (Eq. (34))

2G —
(D) +ig(t) = = [A, (2 + ) + Ayz + As + BNZ - PYk(1
K

+ K) - [icos[,@log(z—””
z-1
- sin[ﬁlog(z—Hﬂ] for |t| <1
z-1

where A;, A,, Az are given by (B8) and

B= 882\v1’sv:8Z _ 6(1 - al)Bsav + l +i 48av75vgzz + 12)
[ l R I
< 2 4 (1 + 2/32)>
(=3+3a))e,z Yo T ey 2 Fav Aw
+ > + +—
I 1 R

When the cylinder rolls forward, the detachment condition
(25b) has to be satisfied,

-p(=0)=T,
By substituting (34) into this relation,
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(B7)

T0=2G<(2(K— Dy +3(k=1)(1-a;)+3(1 —a1)<% +232)

(k= 1DA&?

+2'ysv+(K—1)a|)eav+ >

. (-2B+Aw+ (k- I)Aw)l) (B9)

R

Also, the numerical solution shows that a;=1-A where |A|<2e
—2. So in the analysis, the following relation has been taken:

a; =1 (B10)
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